The Inspec database can be found in our Databases list. Choose “Expert Search”. Ensure that only the Inspec database is selected and limit the search to the last 10 years.
For a literature review search in Inspec, limit the search to 1 or 2 concepts.

Subject example:

Concept #1
Micropumps

Concept #2
Medical Fields

Micropump*
Micro pump*
MEMS pump*
BioMEMS pump*

OR

Medic*
Biomedic*
Pharmac*
Therap*
Drug*

Use OR to combine the words within the same concept. Write each concept in parentheses.

Combine the concepts using AND. Add wn KY after each concept to search in the Subject/Title/Abstract fields.
End the search by adding: **AND (bib) wn TR**. This offers documents that include more than 50 bibliographic references.

The search gave 23 results. Click on “Detailed” to evaluate the relevance of each result.
This literature review, containing 130 references, seems interesting.

Radio frequency controlled wireless drug delivery devices

Abstract: Drug delivery devices have revolutionized the course of therapeutic treatment in the recent past. These devices provide a firm foundation for diverse strategies to overcome the limitations of systemic administration that cannot provide high drug potency at the specific disease infested body tissue. The ongoing developments in the pharmaceutical industry have focused on exploring reliable actuating mechanisms that can provide therapy and dispense drugs precisely to control therapeutic effects with minimum toxicity. The wireless actuation of drug delivery devices has been considered as an interventional innovative approach to release encapsulated drug compounds. This review paper highlights implantable and transdermal drug delivery devices that are based on wirelessly controlled microhypes, micropumps, microshakes, and magnetic robots. Their key features, such as working principle, dimensions, materials, operating frequency, and wireless actuation through radio frequency for drug delivery are explained. The interaction of radio waves with electrically conductive and magnetic nanoparticles is also discussed for drug delivery. Furthermore, the radio frequency assisted data telemetry and wireless power transfer techniques are elucidated for drug delivery devices. The opportunities to enhance the patient's control on therapeutic dosages and release mechanisms are still possible by incorporating advanced wireless sensors for connecting future innovations in the wirelessly controlled drug delivery devices.