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INTRODUCTION

This is the first part of a series of DRAGON theory manual that will be published over the next few years.
The main goal here is to describe the collision probability integration techniques used in DRAGON. In order to
achieve this goal we will first present in general term the collision probability method and introduce the various
techniques used in DRAGON to discretize the transport equation. Note that we will not discuss here the algorithms
used in DRAGON for solving the resulting system of collision probability equations. This omission is voluntary
since the second part of the DRAGON theory manual will address this problem. We also avoided discussing the
technique used in DRAGON to compute the directional collision probabilities. The reason in this case is that
these probabilities are introduced in parallel with the leakage models which will also be described in part 2 of the
DRAGON theory manual. Moreover, these are computed using a technique that follows closely that presented here
for the standard probabilities and do not need a special treatment in DRAGON.

This report has been divided into 6 different sections. In Section 1 we will present a general derivation of
the standard collision probability method and of some of its variants including the interface current technique
and the Ji approximation. This will be followed in Sections 2 to 4 by a description of the explicit form the
collision probability integration relations take in 1-D, 2-D and 3-D geometries. Sections 5 and 6 illustrate how
these integrations are implemented in DRAGON. In fact, the specific numerical quadrature used for various type
of geometries and collision probability calculation options are first described in Section 5 while in Section 6 we
discuss how this information is used in the EXCELL module of DRAGON to generate the collision probabilities
themselves.
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1 THE COLLISION PROBABILITY METHOD

This is one of the most widely used method for solving the integral form of the transport equation.>'2! It
is based on the fact that the flux at a given point a in space is proportional to the neutron source at any point b
multiplied by an exponential attenuation factor which is proportional to the optical path that must be crossed by
the neutron generated at b to reach a. This optical path 7, which is given by:

. / "s(ryr,

is defined by analogy with the problem of light transmission through an absorptive media.

In this section we will first present the general form of the integral neutron transport equation followed by
a discussion of the discretization method that will lead to a definition of the collision probability method. A
general definition of the collision probability matrices and their properties will also be presented. Finally, we
will discuss how the boundary conditions can be applied in the context of the collision probability technique
and additional approximations that can be applied to region interfaces which are compatible with the collision
probability technique.

1.1 The Integral Transport Equation

The integro-differential form of the time independent neutron transport equation in the presence of a source
ist!]
18

G-V + 37 )| o7, 0, B) = Q7. &, B) = Qu(7, 8, ) + Q; (7, 4, B) + S(R. 0. B), (1D

where the source term Q (7, Q, E) has been decomposed into a scattering term Qs (7, O, E):
Qs(7F, (L E) = /dE’ / PPAS,(7 Q- QL E — B)p(F, Q' E), (12)
and a fission term Q) (7, Q, E)
Qs(7, 0, E) = x(E) / dE'vS (7, E') /d29’¢(F, Q' B, (1.3)

that both depend on the neutron flux and a fixed source S(7, ﬁ) which is independent of the neutron flux. In the
case where the fixed source identically vanishes, the above transport equation becomes an eigenvalue equation and
the fission source can be modified to the form:

Qf(F?QvE) = @
eff

/dE’VEf(F, E') /d29’¢(ﬁ Q' E, (14)
where kg is known as the multiplication constant.[!?!

In order to simplify the notation we will consider in our derivation only the one velocity version of this equation
namely:

(69 + 5] 675, = (), (15)

where cross sections and the flux are assumed independent of the neutron energy F. We also considered the case
where the source is isotropic by selecting Q(7, Q) = ;- ¢() such that:

[ #90.5) = - [ 0 = a(),

Q Q

where ¢(7) represents the scalar source at point 7.
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We would now like to evaluate the neutron flux at a point 7 due to neutron created at any point 7 surrounding

—

it. Since the neutron flux ¢ (7', €)) at any point 7’ satisfies the transport equation, we can write the drift operator

as - V' = —d/dR for each point 7/ = 7 — RS} and the local transport equation becomes:!'
d | (7 — RO) | ¢(F — RQ, Q) = ! (7 — RQ)
iR 7 7 Q) = -a(7 :

Now using the fact that:

d
iR exp

exp

we obtain: p )
_ R g RE.G) = e By — R
IR o7 — RQ, Q) 1t q(7 — RN)
where
R —
#(R) = / S(7— R'O)R. (1.6)
0
The above equation can be transformed to:[®!
- -1 (R ,
(7, Q) = e "B p(7g, Q) + o / e TE)q(F VAR, (1.7
T Jo

where s represents a point on the surface S where boundary conditions will be applied. Integrating over all
angular directions the transport equation becomes:

e T(Rs) Q’ 7 = Q‘/ 2,/ e () 21\ 73,0
o) = |~ @ N)o- (s, Q) + | Fmral™)dr (18)
where we have used
d*r = R2d*QdR, (1.9)
(- N_)d?r = R%d?Q, (1.10)
T(!L‘):/ S(R)dR, (1.11)
0

with R = |7 — 7’|, Rg = |F — Ts|, and where

o(7) = / P (7.0,

—

represents the scalar flux while ¢_ (s, {2”) is the incoming angular flux at surface S. Similarly, one can obtain an
equation for the outgoing angular flux ¢ (s, Q2’) at S by taking the limit ¥ = s in equation Eq. (1.7):

R
6475, 8) = g7 ) 4 [ e TWg( . (112
0
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1.2 The Boundary Conditions

In order to ensure the closure of the above system of equations, namely Eqs. (1.8) and (1.12), boundary condi-
tions are required. Typically, two types of boundary conditions will be considered.

In the case where there is a direct relation between the outgoing and incoming angular flux on the surface S,
one uses the so-called albedo boundary condition

¢_ (75,9 — 2(Ns - Q) = B(Fs, Q)¢ (75, ), (1.13)

where the albedo (7, Q) represents the reflection coefficient at surface S and Q- 2(]\7 5 - fl) is the final direction
of the neutron after a mirror-like (specular) reflection. Note that vacuum boundary conditions correspond to the
special case where the albedo vanishes identically.

The second type of boundary conditions we will consider are the periodic boundary conditions. In this case the
neutron leaving a surface S will re-enter the cell by a different surface S” and the boundary conditions will take
the form B B B

(b—(FS’»Q) = T(FS - FS'aQ)¢+(FS'aQ)? (114)

with T'(Fs — 7s, ) the transmission operator.

Each of these boundary conditions can be applied in two different ways. The trivial option is to solve the
transport equation for the scalar and angular flux on a finite cell, and apply directly the above relations to the
angular flux at the cell limits.!>®! An alternative is to unfold the cell to infinity using the boundary conditions and
solve the transport equation only for the scalar flux. Note that in order for the second method to work, an analytical
relation for summing the contribution from the sources at infinity is needed. We will discuss later the consequences
of using each of these techniques in the collision probability method as well as present the summation relations
required to take into account the sources at infinity.22-24.281

1.3 The Discretized Flux Equation

In order to obtain the discretized flux equations, we will divide the domain into Ny, regions of volume V; and
assume that the cross sections and the source inside each region are constant:

(r) =%, for 7 € Vj,
q(7) = q; for 7 e Vj.
We will also consider the external boundary S to be composed of Ng surfaces of area S,. The angular flux

on these surfaces we will approximated by a limited series expansion in terms of half-range spherical harmonics
¥ (£, N1), namely:

N,
S A 1 - v = Vi N
0+(7s, D) = = Do (Fs)u” (D, Na), (1.15)
v=0
where:[8:27]
1 forv =0
bR 2 V2(30-NL —2) forv=1
YU, Ny) = 20 Z\?i forv =2 (1.16)
20 - N3 forv =3

such that N. 1= N with the vectors N’i , Ni and N 3 forming a three dimensional unit vector basis on the surface
S.. Here we considered the case where the series expansion in spherical harmonics is limited to N, = 4. The
half-range spherical harmonics satisfy the following orthogonality relations

/ (G Ny (8, M)t (8, Na)dQ = 75, (1.17)
(G-N1)>0

where d,,, is the Kronecker .
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We will also define the average scalar flux inside each region as:
1 3
== | o(Pd’r, (1.18)
Vi lv,
while the various components of the average angular flux on each surface will be written as:
4 O = o ~
ra=g [ r[ N K)o D), (1.19)
¢ Sa Js (G- N

Here we may note that the case where the flux is uniform in volume V; correspond to ¢(7*) = ¢;. On the other
hand, a uniform angular flux on surface S,, corresponds to:

—

. 1 & .
6+(75, ) = = > o4 v (D, Ny). (1.20)
v=0

We can now integrate Eq. (1.8) over each volume V;. Using Eqgs. (1.18) and (1.20) we get the following relation
for the average flux in region i:

T(RS) _’ . ) . o
ZZ/ / 47TR2 .Nf)(b*’aw (QaN*)d rd°r

a=1v=0
id e (R 3.1 13

+Z/V /V g ', (1.21)
j=17Vi Vi

where we assumed that the components of the angular flux ¢” (7s) are constant and equal to ¢ , on each surface
Sa-
We can also obtain an equation for the average outgoing angular flux on surface « in the form:

Rs) a. W oL L L.
T ZZ/ / g (@ NU (@ N(@ Nyt (€ N ot prd*r!
B=1 p=0
*Z/ / Tz O Nw" (G, N g dr'dPr. (122)

A final comment concerns the discretization of the boundary conditions described in Eqs. (1.13) and (1.14).
Using the approximations described above, we will have

¢ o —¢oa+ZiA i (123)

pf=1p=1

where ¢0 represents the fixed incoming angular flux and A“’ is the boundary condition matrix which gives
a relation between the outgoing current on a given surface and the incoming angular flux on different surfaces.
Typically for purely reflective boundary conditions this matrix will be equivalent to the product of two Kronecker
delta functions 6,5 and 9,, ,,. Finally note that if one relies on an unfolding of the geometry to apply the boundary
conditions on the problem, one can in general avoid the use of the above approximation on the angular flux at the
cell boundary.
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1.4 General Definition of Collision Probabilities

Based on Eqgs. (1.21) and (1.22) we can now define four types of collision probabilities:

—T(R) 3 3
oo e =
v / / e RS) —» ]\7 )wy(ﬁ N )dS /d2 (1.25)
- pza i T " ™ '
47TRS
e~ T R) _, oL 9
pa=w= [ G @ R @ S, (126)
77' (Rs) _, o o JE—
Pag = —pZ‘é ’/ /3 Tr (@ NN )G N )pH(Q, Ny )dPrd?r, (127
5

in terms of which the transport equation becomes:

Z ipuﬁb“ + Zpqu’ (128)

a=1 =0
L= Z ZPZ’WLQ + Zijqj, (1.29)
B=1p=0 j=1
or in matrix notation:
5 P, + Py, (1.30)
L =P, f R (131)

where gg, J; and ¢ are vectors containing respectively ¢;, ¢% and g;. Similarly, the matrices P,,,,, P,s, P5, and P,
contain respectively the elements p;;, p., , p%; and pgg

1.5 Properties of the Collision Probability Matrices

From the symmetry of the optical path 7, we can derive directly the following reciprocity relations:

Vipij = Dij = Dji = Vibjis (1.32)
v ~V ~V Sa v
V;pioc = Pia = Pai = Ipai’ (133)
SCY v ~UV ~V S v
Pl = Pty = s = W (134)

These collision probabilities also satisfy classical conservation relations that can be derived easily using the integro-
differential transport equation. Integrating Eq. (1.5) over all neutron directions and over the total volume V' one
obtains using Stoke’s theorem:

/SN.J(F)dQH/VZ(F)(z)(m%:/Vq(f)d%, (135)

where we have used the fact that:
J(7) = / Qo (7, Q)d*Q
9

The above equation can also be written in the following discretized form:

Ng N; N;
D Satt o+ D> TiVidi =Y Vig. (1.36)
a=1 =1 1=1
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Now, let us assume that the source is isotropic and uniform in volume V; and vanishes everywhere else, namely:

)

1 for7eV;
%=1 0 elsewhere

then we obtain, using Eqgs. (1.28) and (1.29), the following expressions for the scalar flux and outgoing angular
current:

®i = pijs
¢-D',-,a = p(l;]a
which after substituting into Eq. (1.36) lead to:
N N;
Zf g +le szg—‘/}> (137)
or using the symmetry relations:
Na N
Y Pt P =1 (138)
a=1 j=1

Similarly, if one considers the case where the incoming current is uniform on surface Sg in direction 1 and

zero elsewhere:
o= 1 for7e S
0 elsewhere

)

we will have, using the collision probabilities equation:

_ .0
d)' - piﬁ7
0
paﬁa
which can be substituted in Eq. (1.36) to produce:
N,
< Sa S
» o= P pos + Zz Vips = '350,“ (1.39)
a=1 i=1
or using the symmetry relations:
N, N;
SO+ P = dou- (1.40)
B=1 i=1

1.6 Multi-Region Collision Probabilities

In the case where the neutron source is identical for each region ¢ € I (namely ¢; = q; for i € I), it is
possible to obtain directly the average neutron flux ¢; in region I without having to compute the individual local
components of the flux ¢;. Since the averaged neutron flux in region [ is given by

¢r = VIZV@

iel

we can write using Eq. (1.28):

N, Ny
ZZZ Zpuld)u,a I Zzzwpiqu;

ISl a=1pu=0 i€l J jeJ
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where we have assumed that q; = ¢ for each region j € J. We can therefore write

¢r = Z fjpmqs“ + ZpuqJ, (141)

a=1 pu=0

where we have defined:

Vipry = pry = ZZPZJ = Z/ Z/ Py d‘sr’al3 (142)

i€l jel el tjel
L RS) " ' v N 3.0 2
Vipr, = ;pm = ;/ / R Q- N (G, No)dPr' d>r. (1.43)

Finally note that if region I is made up of n; regions of identical volumes V;, the above set of relations can be
further simplified to the form:

prs=— Z > pij (1.44)

zEI Jjel

Pla=— me (145)

el

1.7 Using Boundary Conditions in the Collision Probability Method

The boundary conditions we will use here are in the form of a relation between the average outgoing angular
flux ¢ 't g on a surface Sp and the average incoming angular flux ¢” , on a different surface S, (see Eq. (1.23)).
Here we will write the boundary conditions in the following matrix form

J_=AJ,. (1.46)
After multiplying Eq. (1.31) by A one obtains:
J_ = AP J_ + AP,,q,

which, after inversion yields: B
J_ = (1—-AP,,) 'AP,,q,

where I is the identity matrix. After substitution in Eq. (1.30) one gets
¢ = (P, + Pys(1 — APy, ) 1AP,,) ¢ = P2 G, (1.47)
where
P;, = (P, + P, (I — AP,,) 'AP,,)
= (va + vaA(I - PssA)_lPsv)
= (Poy + P (A7 = Py) 'Pyy) (1.48)

is known as the complete collision probability matrix.
In the case of albedo boundary conditions, the general form of A”” B 18t

AV = Bobapd™™,

where [, is the reflection coefficient at surface «. In the case of vacuum boundary conditions 3, = 0 while for a
total reflection on surface o we will use 3, = 1. Accordingly for a totally reflected cell we will have:

P, = (Py, + Py (I-P,,)"'Py,), (1.49)
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while for a cell fully surrounded by vacuum we will use:
P, =P,,. (1.50)

Finally consider a cell with one region and two external surfaces and assume that the spherical harmonics series
expansion for the angular flux is limited to /V,, = 0. Assuming that the various collision probability matrices take
the form:

va = a,
P, = [b c] ,
Psv = |:d:| )
e
r s
Péb {t u:| )
and that periodic boundary conditions are to be imposed on the cell, namely:
0 1
SOk
we obtain the following result for the complete collision probability matrix:
1
P, = (a+d(br+c(1—3s))+eb(l—1t)+ cu)).

(1—s—t+st—ru)

One final comment on the boundary conditions. Because we use limited series expansions for the angular flux
at the outer surfaces, the general form of the boundary condition matrix described above is also limited to the
same expansion order. In the case where the interface between two regions is not treated explicitly as a boundary
condition, the above approximation is not used which is equivalent to using an infinite, rather than a finite series
expansion for the angular flux at these surfaces. We will return to this problem in the next section when we discuss
the interface current method.

1.8 Interface Current Approximation

The interface current method involves a further approximation to the collision probability method.*:8! In addi-
tion to using a limited spherical harmonics series expansion for the angular flux on the external surfaces, one also
uses such an expansion at specific surfaces inside the cell. As an example, consider the case of a 1-D Cartesian
cell located between z = a and z = b, and subdivided into an even number of subregions (/Vy/) such that:

Zi 1 §z§zi+%,
with
a=z
—1
b:ZNV+%'

We may wish to use the collision probability method on the full cell, in which case the limited series expansion for
the angular flux will be applied only on the two external surfaces. This represents the standard collision probability
method described before. Alternatively, we could have divided the problem in two parts, namely a first cell (L)
containing the first Ny, /2 regions and a second cell (R) containing the last Ny /2 regions. As a result two sets of
transport equations would be produced namely:

—

¢F =PLJE +PLd", (151)

JE=pLJL +PL G, (152)

Sv
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for the first sub-cell and

¢ =PI+ PG, (153)
JE=PLJE L PEGR, (1.54)
for the second sub-cell. The two sets of collision probability matrices denoted P%,, P% , P%_ and P, for the first

sub-cell and P, PX P and PZ for the second sub-cell would then be computed assuming each cell to be

isolated in space. Since a neutron leaving the left surface of the second sub-cell enters directly the first sub-cell
by its right surface, and vice versa, there is a direct relation between the corresponding components of the .J f and

J L vectors (and J ® and J f_). Defining an extended current vector as jiE = (J_;LE, ff) we can combine Eqs. (1.52)
and (1.54) to the form: B B
JE =PLJE +PE G, (1.55)

where ¢¥ = (¢*, ™) and
PL 0
PE _ 88
w= e

PL 0

E sv

= e

Similarly, by defining ¢Z = (¢~, 7*) Egs. (1.51) and (1.53) can be combined to the form:

oF =PEJE 4 PE 7 (1.56)

vU

where

o P
Pl 0
Pﬁ) |: 0 PR :|

We can now close this system of equations using boundary conditions for the outer surfaces and the angular flux
continuity relation for the inner surface. Combining these condition into matrix A we obtain after some algebra
the following final form for the interface current transport equation:

oF =P q", (1.57)

where
P;, = (PL, + Pl (I1- APL)'APL), (1.58)

which are identical to Eqs. (1.47) and (1.48) except that the matrix A now involves in addition to the original
boundary conditions, angular flux continuity relations at the interfaces. Assuming that the current expansion is
limited to the isotropic component for the four surfaces, as is the case for the two sub-cells problem we considered
above, the matrix A takes the form:

B, 00 0

0 01 0
A=1o9 10 ol

0 0 0 B

where external albedo boundary conditions are used on surfaces a and b while internal current transmission is
assumed at the interface of the two sub-cells.

Finally note that one of the perverse effects of using the interface current method in general 2 and 3-D geome-
tries is the so-called refraction effect where a neutron, which would be traveling in a straight line when the full
collision probability method is used, may return to its point of creation after crossing interfaces where angular flux
homogenization takes place.!'8:7]
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1.9 The J. approximation

The so-called J+ method represents the special case of the interface current method, where each individual
region in a cell is considered independently.[?-16-19:25:271 Ag a result, the restricted spherical harmonics series ex-
pansion for the angular flux is used at each zone interface. For the 1-D case presented in Section 1.8, the number
of surfaces on which the current is approximated is 2Ny, rather than 2 for the collision probability method or 4
for the interface current method described above. The main advantage of treating each region individually is that
modifying the properties in a single region does not affect the collision probabilities associated with the other
regions. However, this is at the expense of using an approximate angular flux distribution on all interfaces.

One last comment on the J method concerns the number of collision probabilities to evaluate. Since the
collision probability matrix P associated with each region contains a single term, namely p;; we will have using

Eq. (1.38) the relation:
1 Je
=—|1- v 1.59
Pu =g ( ;P1a> ) (1.59)

namely, knowledge of the leakage probabilities is sufficient to evaluate the collision probability. Similarly using
Egs. (1.33) and (1.40) we will have:

S, e
0 (& v0
= Sou — § , 1.60
Pla aviy, |70 ﬁ:1pa6 (1.60)

that is the leakage probabilities are related directly to the transmission probabilities. We will therefore have:

N, N,

1 « [e3
P11 = ——5 =5 1-— E a6 v — Oa E ])VO . 1.61
H 1i12% a=1 > ’ > B=1 o ( )

As a result, when using the J; method, the evaluation of the transmission probabilities associated with each
isolated cell is sufficient to determine the full set of collision probabilities associated with this cell.
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2 COLLISION PROBABILITY IN 1-D GEOMETRIES

The collision probability definitions presented in Section 1 are all given in terms of 3-D volume and 2-D
surface integrals. We will now discuss how these relations can be simplified when a 1-D Cartesian geometry is
considered. Here by 1-D Cartesian geometry we mean a 3—D cell which is uniform and infinite in both the X and
Y directions. This cell will generally be heterogeneous in the Z direction but not necessarily infinite. The typical
1-D Cartesian geometry we will consider is that presented in Figure 1 where each region V is defined as:

—o0 < x < oo, —o0 <y < oo, zk7%§z§2k7%

for 1 <k < Ny . As a result we will have for a surface S, perpendicular to the Z-axis (1 < a < Ng = 2):

1 1 oo oo
—/ d*r'F(7,2) = —/ da:’/ dy'F(7,2.) = F(7,2.), 2.1
SO& Sa SOt —00 —00

while a volume integral of a function of F'(z) will take the form:

1 3 1 Frtd "
Vk/ d°r' F (. / dx/ dy/ B A F(F ) = W/zl dz'F (7,2, (2.2)

5 k

m
¥

with V1P = Az, = 2, +1 =%, 1, the width of region k and the points z 1and zy,, , 1 are associated with surfaces
S1 and Ss respectively. For the final surface or volume integrals over 7 we will use spherical coordinates and write:

27
/(Q.N) ") / dgp/ sin 0d9F (,0, R, ')
Sp Bl
27
:/ d@/ dUF((Pauazﬁvz/)v (2.3)

27
/ dgp/ sm&d@/ dRF (p,0,R,2")
2 1
:/ dgp/ d_u/ + dzF(p,u,z,2"), 24)
0 0o U 1

where we have used the definition for d®r and d?r given respectively in Eqs. (1.9) and (1.10) and the notation
z = Rcosf and u = cos .
As a result the various probabilities will be defined as:

1 [P+l 2 d +1 /
VitPpij = pij = E/ o / d‘P/ ; / e, 25)
Zi7 %

[

1
2
1 Zivd 2 - p
ViPpl, =P = — / dz’ / dip / du ¥ (Q, N_) e (#mz), (2.6)
dr J, | 0 0
T2
1 v v 1 27Td 1 du 2i+% d (ﬁ ]\7 )d;”(ﬁ — ) 77_(907“’272/) (2 7)
4po¢L_pcm - 47_(_ o <)0 0 U . z + I + € b .
T
Lo 1 2 1 5SS S S (e 2
Doy = Pory = dp | du(Q- Ny)pH(Q, Ny (Q, No) e  Tiotm0s), (2.8)
4 ar /o 0

2.1 Finite Cells Collision Probabilities

Here we will consider the 1-D cell presented in Figure 1. We will first assume that it is isolated in space,
namely, vacuum boundary conditions are to be applied on the external surfaces (S; and S3) associated with this
cell.
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2.1.1 The collision probability p;

Let us consider the expression for p;; given in Eq. (2.5). According to the notation given in Figure 1 we can
write:

1 (zig1 — Y+ Zi;iﬂ Az ¥+ (2 — zj,%)Ej) fori < j
i—1 S
T(R) _ % (zj+% _ Z/)Ej + Zk:j+1 Az Xy + (Z - Ziié)zi) fori > j : (2.9)
Lz =23 fori = jand 2’ < z
L2 - 2)%; fori =jand 2’ >z

where we have used the fact that R = z/u. In the case where 7 < j and both ¥; and X; are not 0 we will need to
evaluate the following integrals over z and 2’. :

2,41 Z]. 1 1 Jj—1
I(Z,Z’):/ +3 dZI/ +3 dz exp (a <(Zi+%zl)2i+ Z AZkEkJr(ZZj_%)Ej)

i-1 -1 k=i+1
Jj—1 z, ) z, e
1 1*% i, 1 —z J+% —ZL(z—2z. 1
= exp (—— E Az dze (#ip4=2) dze (2=2_3) (2.10)
u k=i+1 Zi-1 Zi-%

These integrals are trivial and yield:

u? 1 131
1(2’72,) = EZZ] exp *E Z AZkEk — exp 7EZAZ]€E]¢
k=i+1 k=1
1 < 1
— exp <_ﬂ Z Azk2k> ~+ exp <_E ZAzkEk>
k=i+1 k=1
w2
= SH5) [Fl;%)]gr%(u) - er%,jfé(“) — Fi+%,j+%(u) + Fi+%,j—%(u)} (2.11)
where
T‘il,‘il
Figy jr1(u) = exp [— (Tj)] , (2.12)
and
j—1
Tied gl = BiZip1 — Z11) + Z Ei(zeqs — 2—1) +55(z501 — 25 1) (2.13)
k=i+1

After the integration over ¢ has been performed we are then left with the following expression for p;;

=

i e
pij:f/ u du [Fifé’jJr%(u)—Fif ’jfé(u)—FH%’ﬂ%(u)+Fi+%’j,%(u)} , (2.14)
2555 Jo

Now, using the definition of the exponential integral (see Appendix A):

1
E,(z) = /0 exp (%x) w2 du, (2.15)

we obtain:

1

5 Es(mi_ijp1) = Es(misy jo1) — Es(Tigs 5401) + EB(Ti-&-%,j—%)] . (2.16)

f)ij =
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Three other cases may be considered. First, the case where 3; = 0 which leads to:

R ‘/ilD 1
Dij = E/o du |:_Fi+%,j+%(u) J'_Fi-i-%,j—%(u)] ;

since the exponential is now independent of z’. This result in:

1D

ﬁij:ﬁ |:E2(7-,L-+%7j_%)—E2(7i+%,j+%):| . 2.17)
We may also have ¥; = 0 which yields:
V_lD
Pij = e [Bo(risy y3) — Balriyoy)] 2.18)

since the exponential is now independent of z. Finally in the case where ¥; and X; both vanishes, the exponential
function becomes independent of z and z’ and we obtain

1Dy /1D
_ v,

Pij = ——5—Eu(Tipy 1) (2.19)

In the case where ¢ = j the integral over z in Eq. (2.5) must be divided into two different parts since the
expression for 7(R) with z < 2’ is different from that one gets when z > 2. As a result we will write

1 1 d Zi 1 2! EZ r_ Zi1 Ez !
Dii = —/ (_u)/ T2y / dz exp (M> +/ = dz exp <M>
2 0 u zZ, 1 z 1 u 2 U
i-3 i-3

The first integral over z and 2’ yields:

Z 1 2 (2 — 2 3. 1D
/ = dz’/ dzexp (—%) = % {%—FFF%,H%(u)—l]

i—g i—5

while for the second integral we obtain:

Zitd Zitrd Yi(z—2) u? ZiViID
/Z 12 dz’/z/ *dzexp (—T) =52 " +Fi_%7i+%(u)—1 )
i-g

and we will have:

1 1 Ti—l 4l
Dii = ?/ udu {% +u Fi_%’H_%(u) — u] , (2.20)
iJo
which results in:
_ 1 1
Pii = 55 [2Ti—§,i+% +2E3(7i_141) — 1] =39 |:Ti—%,i+% + E3(Ti_111) — E3[0]} : (2.21)
2 7

Finally for the case where ¥; = 0 we obtain:

1 1 1 Z;,01 Z, 1 1D\2 1 d
Dii = —/ —du/ = dz’/ L Vi) / (_u) , (2.22)
2 o U z7_% zi_% 2 0 u

which diverges.
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2.1.2 The leakage probability py,,

The leakage probability p;,, is defined in Eq. (2.6). Using the notation of Figure 1 we can write:

(%1 — 23 + ZkNLH Aszk) for 4 to the left of S,

o , (2.23)
S ALY+ (2 — zi,%)zi) for i to the right of Sy,

T(R) =

Sl= gl=

for the optical path associated with ;. We will also have (- N_) = u with

1 forv =0
V2(3u —2) forv=1

Y(Q,N_) = :
v ) 2sinfsiny forv =2

2sinfcosp forv=3

Accordingly, the leakage probabilities for region V; to the left of S,, becomes after integration over z’:

" 1t
p?a - 2%, /0 u du {Fz’—o—%,a(u) 7Fi—%,a(u):| )

Ve

Pla= g5 [ (Bu—2udu Firpal®) = Fioy o],
Pr =0,

Pia =0,

where the last two terms vanishes because of the integration over (. Here we have used Eq. (4.9) for the definition
of Fiy1 o(u)and

Nv
Tiata=2i(zirs —2u1) + Y Tk(zes —2z-1)- (2.24)
k=i+1
Integrating over w yields:

" 1
Mo = 555 | Bo(riaga) = Balrioya)] (225)
5L fﬁ[?)E( ) — 3E4( ) — 2E5( ) + 2E5( )} (2.26)
Pia = 2%, 4 Ti—i—%,a - 4 Ti—%,a - 3 7'71+%7a 3 7'7;_%7(1 . .

In the case where V; is to the right of S, , the second form for 7(R) in Eq. (2.23) must be considered and we obtain:

- 1
P = g5 | Bs(raimy) = Bslrairs)] 227)
V2
Pia = 221 |:3E4(Ta,i7%) - 3E4<Ta,i+%) - 2E3<Ta,i7%> + 2E3(Ta,i+%>i| ’ (228)
where
j—1

). (2.29)

N

Tajtl = E Sk(zips —2-1) + E5(z11 — 25
k=1
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Finally in the case where 3; = 0 the expression for 7(R) becomes independent of 2’ and we obtain:

=t | Cdu By o),
ﬁzla = @ /1(3U —2)du Fz‘+§,a(u)a
Pia =0, 0
Pio = 0,
which leads to:
Y, = V”TwEQ(Ti+%7a), (2.30)
PR \/5‘2/;113 8B (ri s 0) QEQ(TH%,Q)} , 231)
and
Pon = Vi;D B (T i-1), (232)
Pio = ﬂ?w [3E3(Ta,i_%) - 2E2(Ta,i_%)} . (233)

in the cases where V; is to the left or right of S, respectively.
2.1.3 The transmission probability pgl,

Finally, the transmission probability py/) is defined in Eq. (2.8). Following the notation of Figure 1 we can
write:

1 %
T(R) == AzSy, (2.34)
k=1

for the optical path associated with pz- . We will also have:

(Q-N)=(Q-Ny) =,
with
1 forv =0
- V2(3u—2) forv=1
P Ny) = .( . ) :
2sinfsingy forv =2

2sinfcosp forv =3



IGE-236 Revision 1 17

After integration over ¢, the transmission probabilities from surface S, to S, become:
1 1
ﬁgq/ = 5/ udu Fo q(u),
0
2 1
p’g{/ = g / (Bu —2)u du Fy (u),
0
5 1
ﬁig = % / (Bu—2)udu Fy o (u),
0
1
Pl = / (9u? — 12u + 4)u du F, - (u),
Jo
1
pos = 2/ (1 —u*)uduF,~(u),
0

1
]5:;’;1/ = 2/ (1- u2)u du Fy ~(u),
0

where the terms not given explicitly vanish identically. Again F,, - (u) is given by Eq. (4.9) with

Ny
Tay = O Az (235)
k=1
Integrating over w yields:

y 1
Do, = 51513(7%7), (2.36)
. y 3v2
PO = —2v2p%0 + = BalTa), (2.37)
Doy = Doy (2.38)
Doy = =800 — AV2P0%, + 9E5(Ta ), (2.39)
Py = 2[B3(Tay) = Bs(Tan)] (2.40)
Pog, = 2[B3(Ta,y) — E5(Ta,y)] - (241)

2.2 Infinite Cells Collision Probabilities

As we have stated in Section 1.2 two different techniques can be used to implement the boundary conditions,
one of which consists in unfolding the cell to infinity. In principle using the collision probability method on an
infinite cell is impossible since it involves an infinite sum of contribution. Here, we will show that this sum can
be written in a closed form and the collision probability can be evaluated explicitly to the expense of replacing the
exponential integral functions by a numerical quadrature.

2.2.1 Periodic boundary conditions

In this case the cell unfolding results in an infinite lattice with a periodicity corresponding to the cell pitch
(Ny regions). Each cell 7 in the initial geometry will therefore appear an infinite number of times (see Figure 2).
According to Eq. (1.44), the total collision probability will then be represented by the sum of the individual prob-
abilities p;;, . The optical path from region ¢ to j will be given by:

o (R) = 1 ((ZZ-+% - 2% + Z{;iﬂ AzpYp + (2 — zj_1)%; + mTp) fori < j (2.42)
" Lz = 2% +mmp) fori=j
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where m represents the number of original cells the neutron must cross before reaching region j. For the case
where an isolated cell is to be considered, only the term m = 0 is permitted and the result is identical to that
obtained in Eq. (2.9). In the above 7, = 7~ (see Eq. (2.35)) is independent of z and 2" and represents the optical
path traveled by a neutron for a full lattice period.

The contribution to the collision probability matrix coming from a neutron which has traveled an optical path
Tp,m(R) is:

" I
(Dij)pm = m/o u du [Fi—%7j+%(u) —Fyoa(u) = Fipyjia(u) + Fipyjo1(u)

m mT,
x (Bp)™ exp <_—p) .
u
The coefficient 3, is the product of the transmission coefficient for each interface combination (S, S, ):
Bp = A12421, (243)

where A15 and Ay are the transmission coefficients from surface S; — S5 and S; — Sy respectively (see
Eq. (1.46)). The factor 3, represents the attenuation of the neutron flux due to the boundary condition for a
neutron travelling through a single cell. After summing over all possible values of m we can write

Nl

i e
Pij = ﬁ/o u du {Fi*%d#%(u) —Fioy -1 = Fipg gy

) {1 ~pexp (7%)}_1’ (2.44)
using the fact that
gjo(ﬁp)m exp (—%) = gjo [ﬁp exp (—Z—p)}m - [1 — B, exp (—%)] o (2.45)

Here the last integration over u can no longer be expressed in terms of exponential functions and will require a
numerical integration.

Note that in order to complete this evaluation one should sum the above expression over the M/ = oo possible
location of region ¢ in the unfolded lattice and then divide by M as specified by Eq. (1.44). Since the individual
D;; are identical, the final relation for the total collision probability is identical to that presented in Eq. (2.44).

2.2.2 Albedo boundary conditions

In the case where albedo (reflection) boundary conditions are considered, the problem is more complex since
the periodicity of the infinite lattice is now equal to two lattice pitches (2 x Ny instead of Ny /). Moreover, each
cell 7 will need to be considered twice inside the elementary periodic lattice (see Figure 3). In this case the optical
path from region ¢ to j will be given by:

i1 o
ren(R) = | " ((zesg = 2% Shoir A+ (= 2%y 4y ) fori < (2.46)
Lz =2 +mm,) fori = j

with

Tr = 27T, = 274,
Here we assumed that region j is located in a cell 2m lattice pitch away from region j in the initial cell. In the case
where i is located in the initial cell and j is in a reflected cell we obtain:

(241 =28+ 12+ (2 — 25

i )Ej—i—mn) fori <j

=

To,m(R) = , (247)

2= gl

-2+t (z—z_ )Zi—i—mTr) fori =j

D=
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where the index 2 reflects the fact that the neutron will have to cross surface S5 in order to reach region j. For the
situation where 7 is in the reflected cell and j is in the direct cell (surface Sy is then crossed) we obtain:
(zi41 — )i+ (2= 2m1)% + mn) fori < j

(i1 =2+ 711+ (2 — 1) —|—mTr) fori=j

=

T1,m (R) = (2.48)

2= 2=

where 75 (71) is the minimum distance between region 7 in the original (reflected) cell and region j in the reflected
(original) cell:

Ny Nv
= Z Azp Y + Z Az Yy,

k=i+1 k=j+1
1—1 j—1

=) AnSp+ Y Az
k=1 k=1

In the above, 7., 71 and 7, are all independent of z and z’. Neutrons traveling through a distance 7, will therefore
cross surfaces So and Sp successively. As a result, the neutron flux will be attenuated by a factor

Br = B2, (2.49)

after each such crossing according to the boundary conditions. Accordingly, the neutron attenuation factors §; and
(B2 will be associated with 77 and 75 respectively.

Substituting the above relation into the collision probability equation and summing all the possible contribu-
tions to region j one obtains the following results after the integration over z and 2’ has been performed:

_ Lo
piﬂ:f/ wdu [Foy iy (0) = Fiy gy (0) = Frpy iy (@) + Fryy oy (W
25,3

@

[1 + B2 exp <—%>] [1 — B, exp ( %)} (2.50)
if 7 is located in the initial cell or
Pij = ﬁ /Olu du [F @ = F (W) = Fy o (w) + Fryy o1 (w)
[1+61 exp (f%)] [kﬂrexp( %)} 2.51)

if region ¢ is located in the reflected cell.

As one can see, in the case where 31 and (5 both vanish, the result one obtains using Egs. (2.50) and (2.51) is
identical to that provided in Eq. (2.14). Even if only one of 3; or 35 vanishes the last term in Egs. (2.50) and (2.51)
disappears and we are left with an integral of the form given in Eq. (2.14).

2.3 Verification of the Conservation Relations for Finite Cells Collision Probabilities

Here for completeness we will prove that the expressions described above for the collision probabilities satisfy
the conservation relations described in Egs. (1.38) and (1.40) of Section 1. We will first write Eq. (2.5) as:

ZPUE —mez +pu2 + Z pzj

J=i+1

Using Egs. (2.16) and (2.20) and the fact that ¢ is to the left of surface « and to the right of surface v we can write:

d 1
Zpijzj = oy yiD [ES(TF%,Q) - E?’(TZ"F%,OL)) - ES(TW;%) + ES(T%Z'+%)) +27 1y
— iV
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where we have used:

Tit i Ny+3 = Titl a0

Ti-3itd = Tytitds

1
Bn(Tizgixy) = Ba(0) = ——
Similarly, using Egs. (2.25) and (2.27) we can write
Na 9
> P = 55 | BaTig 0) = Balmi g o)+ Balryiy) = Balry )]
a=1 v

Adding these two terms yields:

as expected.

20
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3 COLLISION PROBABILITY IN 2-D GEOMETRIES

Let us first discuss how the 3-D volume and 2-D surface integrals required in the evaluation of the collision
probabilities can be simplified when a 2-D geometry is considered. We will assume that the geometries we wish
to consider are infinite and uniform in the Z direction while their extension in a plane perpendicular to this axis is
finite and identified by a two dimensional vector /' as illustrated Figures 4 and 5.

For the final volume or surface integrals over *, we will use spherical coordinates. From the definition for d®r
and d?r given respectively in Eqgs. (1.9) and (1.10) we will write:

27
/ d3r _/ d<p/ 51n9d9/ * dRF(¢,0,R),
Vi

2
/(QN d2 / dgo/ sin0dOF (¢,0, Rs),

i

vl ml:l

NH

which become:

2m Pirl
/ L) g, / dg / ( ) / * dpF(¢,u, p), 3.1)
Vi 17U2 p. 1

i— L

. . F — 27 1
/V(Q~N)$d2r:/ d<p/ duF (p,u, ps), (3.2)
4 0 -1

when we use the notation p = Rsin(f) with u = cos(#). In the case where F' (¢, u, ps) = F (¢, —u, ps), namely
the integral over v is symmetric, we can write:

2 1
/ F)d?’ —2/ ds@/ ( )/p% dpF (¢, u, p), (3.3)
v, V1—u2 o,

1
2

N

27
/(QN F)dQ —2/ d(p/ duF (¢, u, ps), (34)
Vi
while we will have:
()
. . F(F
/ Q- N,)%d% =0, (3.6)

for an anti-symmetric integrand (F'(p, u, ps) = —F(p, —u, ps)).
The volume integral over 77/ will take the form

/ dz/ d%’:/ dz/ dh’/ dp’ = V.
—o0 P EVE —o 'eVi P EVE

/ dh// dp — 2D,

h' €Vy, p' Vi

and using the fact that the properties of the cell are uniform in the Z direction, namely 7(R) = 7(h’/, p), we can
write:

Defining V2 as:

1 / 3.,/ —/ 1 / // / ro
— &’r'F(r') = —= dh dp'F (', p'),
Vi Vi V;?D h'eVi, p'EV



IGE-236 Revision 1

22
where V2P is the surface of the region Vj, projected on the 2-D plane defined by p” = (I/,p’). Similarly, the
surface integral of a function F'(h’, p) will take the form:

2.0 N //_1 o N AN, |P7|
= | & Q- NOF(W. ') = 55 dh'(Q- NL)F(W, p'(B) —=——=—,
So Js, S&7 Jnesa lp" - Nyl
where S22 represents the part of the perimeter of surface V,fD associated with S,. Using the fact that
S o ) N ) N
P P

where u is defined above, we will have

1 — - 1
_/ dgr’(Q~N+)F(h’,P/):W/ i’ 1—w*E (W, p'(h)).
Sa Js, Sa” Jnes.

Accordingly, the various probabilities will be written as:

2D - 27r Pirg  [Pits —7(R)
Vie¥pij = Dij / / N / dp / dpe ) (3.8)
rev; 1 —u p._ 1 p.

e J—

=

27r Piyl 1 _,
VP = Do = / / du / dp’ (4, N_)em (), 3.9
Iev %
§2D B 27r 1
—4 Paj =Daj = / 5 / d“/ S dp gt (€ Ny)e T, (3.10)
€ -3
2D 2m oL o
o pun = = / d [ a / dun/T =2 (@, N (@, N e, @
4 K T2 h'€Sq 0
for the case where the various integrand are symmetric. These vanish for anti-symmetric integrand. Note that by
definition e ~7(%) is always symmetric in u since:
R=—2_.
V1—u?

The parity of the integrand will therefore only depend on that of the half-range spherical harmonics )" (ﬁ Z\7i).

3.1 Finite Cells Collision Probabilities

Again, we will first consider a cell or an assembly isolated in space.

3.1.1 The collision probability p;;

Let us consider the expression for p;; given in Eq. (3.8). According to the notation given in Figure 5 we can
write:

(R) = Nae=r ((PH% — )T+ i1 ApkSk + (p — pj7%)2j> fori <j

; : (3.12)
=P —P)%i

fori =7
where
Apy = P+l — Pe—1>

Here the various P+ are functions of (. Moreover, the integrand is symmetric in u as expected
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In the case where ¢ < j and X, # 0 and X, # 0, the integrations over p and p’ are similar to the z and
z' integrations found in Eq. (2.10). These can again be evaluated in terms of the function Fiy1 j+1 defined in
Eq. (4.9) where we now use:

j—1

Tiptger = Siloips —pixt) + Y Zklprgs — peey) + 55(pje1 — pj1); (3.13)
k=i+1

We are then left with the following expression for p;;
o 2 o .
Dij _m/o dtp//eVidh /0 V1—u?du
{Fz‘fé,j+%(\/ 1—u?) - Fifé,jfé(\/ 1—u?) - Fz‘+%,j+%(\/ 1—u?)+ Fi+%,j—%<\/ 1- UQ)} )
Using the definition of the Bickley Nayler function (see Appendix B):13?!

1 _ n—2
Kin(2) :/0 exp (\/%_uz> (\/1 —u2) du, (3.14)

we obtain:

1 2 ,
Dii =——— d dh
[Kig(TZ—,%’ﬁ%) — Kig(Ti,%’j,%) — Kig(Ti+%7j+%) + Kig(TiJr%’jf%)} . (3.15)

Three other cases may be considered. First, the case where >); = 0 which leads to:

1 27 1
b= | d dn'Ap; | d
P 27721‘/0 SD/'e\a p/o !
{_Fi-ﬁ-%,jﬁ-%(\/ L—w?)+ Fipa (V1= U2)} ;

since the exponential is now independent of p’. This result in:

. Lo . :
Dij :ﬁ/o dy |:K12(Ti+%,j—%) —K12(Ti+%’j+%)}/h dh' Ap;.

'eV;
B ijD zwd . o
_27T2j/0 gp[ 12(7'”%)]»7%) K12(7i+%,j+%):| : (3.16)
We may also have ¥; = 0 which gives:
N e . .
Bij = 277—2/0 d [KQ(TH%J_%) - Klg(Ti_%J-_%)} : (3.17)

since the exponential is now independent of p. Finally in the case where ¥; and X, both vanish, the exponential
becomes independent on both p and p’ and we obtain

1 27
iy = _/ dgo/ dh' ApiDp;Kiy(Ti4 1 1) (3.18)
27 0 'eV; 2 2

In the case where ¢ = j the integral over p in Eq. (3.8) must be divided into two different parts since the
expression for 7(R) with p < p’ is different from that one gets when p > p’. As a result we will write

1 / ) / (e [
b= [ ap [ an / _du / dp
27T 0 'EV; 0 vV ]_ — ’LL2 pi—%

? Ei(p’—p)> /”H% ( Ei(p—p’))
d Sl I d SN
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The integral over p and p’ yields:

1 Pivd
=l
I-u il p

/

? Lilp —p Ti—1,i+1
dpexP(‘ m> =5

+ 52

7

e /P e (_&(p—p’)) _ Tiebind
:7% P >

1
\/1—U2/ / \/1—’LL2 i
P

i

Using
1
0
1 1
1
/ V1—uldu=— (u 1—u?+ arcsin(u)) =
0

2

we then obtain:

1 27
i = — | d dh’{. 1+ Kis(r_ 1 ——]
1 2m ,
= W—le/o dy //ew dh |:K12(O)Ti_%)i+% —|—K13(Ti_%7i+%) —Klg(O):|

Finally for the case where 2; = 0 the above expression can be simplified to the form:

2m : 2m
Ki; (0
pa=g [ e [ avapr =T [Tap [,
4 0 'ev; 27T 0 rev;

which is finite.
3.1.2 The leakage probability py.,

Using the notation of Figure 5 we can write:
1 i
T(R) = ((pi_,_; — Pl)zz =+ Z Apk2k> ,
1 — u? 2 -
k=i+1
for the optical path associated with p;,. We will have according to Eq. (3.7):

(Q-N_)=+1—u? 7 {,‘V_| =1 —u?cos[e(p)] = V1 —u?v(p),

Iz

where ¢ is generally a function of ¢ and

v(p) = cosle(p)].
We will therefore use
1 forv =0
V2(3V1 —u?v(p) —2) forv =1
2um forv=2"

2uv(yp) forv =3

@ [Fi_%7i+%(M) - 1} )

24

(3.19)

(3.20)

(321)

(3.22)
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Using the notation for the surface integral presented in Eq. (3.9) for the zero order leakage probabilities (v = 0),
one obtains after integration over p’:

2m 1
Poy = ! / d(p/ dh’/ V1—u?du |:Fi+%,o¢(\/1 —u?) = Fi_1 (V1 —uQ)} .
0 ev; 0

27TZZ'

Using again the definition of the Bickley Nayler function, the integral over v yields:

1 21
~0 / . .
0 _ d dh [K Y S Kia(r s } 393
Pia 27722\/0 so/'evi 15(7'7,+é’a) 13(’7’2 é,a) ( )

In the case where X; = 0 the expression for 7(R) becomes independent of p’ and we obtain

1 2T
ﬁ?a = — / dgp/ dh/ApiKiQ(TiJr%,a). (3.24)
21 Jo h'eV;

For p}., , the integrand remains symmetric in u () (u) = ¢! (—u)) and we obtain:

1
27’(21'

2m
PL = —2v250 + 32 dy / dh'vy {Ki4(7-i tia) —Kia(rio1 )] (3.25)
0 eV

while 52, = p2, = 0 from Eq. (3.6) since ¥?(u) = —?(—u) and ¢*(u) = —¢3(—u).
3.1.3 The transmission probability pyl,

Finally, for the transmission probability we can write:

T(R) (3.26)

Ny
1 T,
= — A Z = —a7’y 5

for the optical path associated with piy. We will also use:

(Q-Ny)=+1- uQ% =V 1—u2cos[n(e)] = V1—uiw(yp), (3.27)

where 7 is generally a function of ¢ and

w(p) = cos[n(e)],
with
1 forv =0
V2(3V1 — u?w(p) —2) forv =1
2ur/1 — w?(p) forv =2~

2uw () forv =3
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Using the notation for the surface integral presented in Eq. (3.11), the transmission probabilities from surface S,
to .S., become:

1 27
Do = o= / do / dh'Kiz(Ta)s (3.28)
27 Jo 'eV;
. . 3V2 [T .
= 23l + 22 | e [ v, (3:29)
/eV

27
7, = —2v/3pl + 22 e R e (330)
eV

L = —80 — 23 (10, + %) + / T / K 63D
7= / " ap / oy, BV = w2V (1= 03 (0) [Kia(7ay) — Kis (7o) (3:32)
G (3.33)
=2 [T [ o) T () Kt (334
=2 [T [ o) istra) ~ Kis(ras) (339)

where the terms not given explicitly vanish identically.

3.2 Infinite Cells Collision Probabilities

Here we will consider the case where the boundary conditions are applied directly on the cell geometry. Note
that this technique can only be applied to cells having Cartesian surfaces. As a result one ends up with the need
to compute the collision probabilities associated with an infinite cell that involves an infinite sum of path length
contribution. We will show that this sum can also be written in a closed form for 2-D collision probabilities
provided a cyclic tracking procedure can be selected.

3.2.1 Full periodic boundary conditions

In this case the cell unfolding results in an infinite cell with a periodicity of one lattice pitch (/Vy cells) along
each Cartesian direction where the periodic boundary condition is applied. Accordingly, each cell j in the initial
geometry will appear an infinite number of times (see Figure 6). The optical path for a neutron traveling in direction
0 along the line defined by A’ from a point p’ in region 4 to a point p in region j will be given by:

(R) = \/% ((le — )T + Zi;é_l AppXi + (p— pj_1)¥5 + mTp> fori < j ’ (3.36)
T ((p = P)Zi + mp) fori =j

where for an isolated cell m = 0 and the result is identical to that obtained in Eq. (3.12). In the above 7;,, which
is independent of p’ and p, represents the minimal optical path that a neutron, starting at a position p in region 7,
must travel in direction ¢ along line A’ in order to reach a second time the point p in j after traveling through the
infinite lattice. In principle, 7,, may be infinite since the neutron starting at p in j may never be able to reach a
second time this position in j. In practice we will assume that for each value of p, the neutron will always be able
to return to its starting point after crossing a number j (¢, k') of cells:

j(@#h,)

Z Aplzl.
=1

Tp

,m
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We will also define the effective transmission coefficient 3, as the product of the individual transmission coefficient
A, for each pair of surfaces (54, .S, ) crossed by the neutron while traveling through the optical path 7,:

By =[] 4o (3.37)

where we assumed that A, = A, is an element of the boundary condition matrix defined in Eq. (1.46).
We will therefore obtain after integrating over p’ and p and summing over all possible value of m the following
expression for the collision probability:

1 27 1 T —1
Dij 5w d dh’/ V1—u? {1— ex (—7}7)} du
p 7 271'212‘7 /0 LID/}Llevi 0 /6]3 P \V4 ]. — U2
l—exp| ——2 | |exp| ——22= | |l —exp | ——=2= ||, 3.38
[ p( \/1—u2>} p( V1—u? P V1—u? 33%)

where the last integration over u can no longer be expressed in terms of Bickley Nayler functions and will require
a numerical integration.

3.2.2 Full albedo boundary conditions

In the case where albedo boundary conditions are considered, the problem is more complex since the periodicity
of the infinite lattice is now twice the initial lattice pitch in each direction (4 x Ny instead of Ny cells). Moreover,
each cell 7 will need to be considered four times inside the elementary periodic lattice (see Figure 7). In this case
the optical path from region ¢ to j will be given by:

(R) 11,uz (Pixs =P+ 75+ (p— pj_ )% + mTr) fori < j
T,,‘,m =
Nyl /—11_u2 (PH% - )8+ T+ (p—pie

=

, (3.39)
)z + mT,«) fori=j

=

where 7, is defined in much the same way as 7, but for a periodic lattice containing 4Ny, cells and 7, is defined
as the minimal optical path the neutron must travel before it reaches the point p in the lattice corresponding to a
reflection of the original lattice along the X, the Y or both axis. In the above 75 and 7, are both independent of
pand p’. As before we will define the surface attenuation factors 3, and 3 as the product of the albedo at the
surfaces crossed while traveling the optical path 7,. and 75 respectively.

Substituting the above relation in Eq. (3.8) and summing over all possible final values of m yields:

1 2 ! T, T, -1
Dii =——— d dh'/ V1 —u2du B ex (—79> [1— ' €X <—7r)]
Dij 27TZiZj /O W/,GVi o Bs exp 1= 2 16} b T

[1 — exp (_M>} exp <_Tl+é—735> {1 — exp <_Tjé—73+§>] (3.40)
V1—u? V1—u? Vi—u?2 /]’ '

The technique described above also works for the case where one mixes both periodic and albedo boundary

conditions, namely the cell is periodic in one direction and symmetric in the other. However, in this case the

periodicity of the infinite lattice is twice the initial lattice pitch in the reflected direction and equal to the original
lattice pitch in the other direction (2 x Ny instead of Ny cells).
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4 COLLISION PROBABILITY IN 3-D GEOMETRIES

We will assume that the geometry we wish to consider is that which is illustrated in Figure 8. For the final
volume or surface integrals over 7, we will consider spherical coordinates. Using the definition for d®r and d?r
given respectively in Egs. (1.9) and (1.10) we will write:

= 4m R. 1 .
/ %dgr:/ dZQ/ " 4RF(O, R), 4.1)
Vi 0 R, 1
47
/(Q-N,)]Zé—?d%:/ PQF(Q, Rg), 4.2)
; 0

when § is a solid angle which represents the neutron direction of travel.
The initial volume integral will be represented as

/ da’ / dy' / dR' = V3P =W,
z' eV y' eVy R/ €V

where R’ is the distance traveled by the neutron in the region k on a line parallel to the direction Q) while 2/ and y
define a plane in three dimensions normal to this direction. Accordingly for a function F(#') = F(2',y’, R'), we

will write: ) )
= / d*r'F(i) = / da’ / dy’ / dR'F(z',y', R)).
Vi Vk z'eVy y' €V R €Vj

Similarly, the surface integral of a function F'(2’,y’, R’) will take the form:

||

1/ 2100 N A5V 1 / // 1 N P ol
— d“r(Q-NOF(z',y,R) = — dx dy' (- NOF(«',y, R (2',y) ——=—,
5. ) (- Ny)F( ) 55 |, s (€2- Ny )F( ( ))|R,.N+|

€5«

where S3P represents the part of surface Vk3D associated with S, . Using the fact that

5 BNy

(- Ni) = ——=—, 4.3)
| R

we will have

1 = o 1
S_/ dQTI(Q ’ N+)F($I,yl,R/) = S‘S—D/ dl‘// dy/F(l‘/,y/,R/(.’L‘l,y/)).
a JS, o ' €Sq y' €Sa

Accordingly we will define the various probabilities as:

A Rty Ry
VPPpi =iy = / d*Q) / / dy’ /R AR’ /R dRe ™), “4)

[N

47
VAP pY, = :—/ dQQ/ da:’ dy' Frd dR' " (Q, N_)e7(Hs), 4.5)
0 y'eVi R,
S3D I i+3 - R
et =Y, :—/ d Q/ d:c’/ dy’/ dR ¥ (Q, N )e ™) (4.6)
4 am 0 z' €S, y' €S,

=

j—

SBD 1 47 oL Lo
Sa” o — o L / 20 / da’ / dy’ (3, Ny (G, N, o™, @)
4 47T 0 = '€8,
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4.1 Finite Cells Collision Probabilities

Again, we will first analyze the case where a cell or an assembly is isolated in space.!!7-18!
4.1.1 The collision probability p;

Let us consider the expression for p;; given in Eq. (4.4). According to the notation given in Figure 8 we can
write:

(R) = {(RH_% — RS+ Y AR, + (R — R;_1)%; fori<j 438)

(R— R"Y; fori=j’

where ARy, is given by,
ARk; == Rk+% — Rk—%

In the case where i < j and ¥; # 0 and X; # 0 we are left with the following expression for p;; after the
integration over R and R’ have been performed:

~ 1 /47T 2 / / ’
Dij =———— d“9Q dx / dy
7 4772123 0 '€V y'EV;

{szg,ﬁ%(l)—ﬂf%jf;(l) Fip i)+ Fpa a1,
where I is defined as
Titl j4+1
Fip1 jri(u) =exp [— (— " )] (4.9)
and
i—1
Tz:l:§ jti :El(RiJrl Rz:l:l) + Z Ek(Rk+1 _Rk 1) +E](R]:tl _ijé)
k=it+1
:EZ(RPF; _Ri:t%) + Tip1 1 -I-E](Rji; _RJ*%)' (4.10)

Factoring the term in 7, -1 from the above equation we obtain:

1.
bRy

~ 1 /47r 2 / / !
Dij =——— d“Q dx / dy
J 47'('212] 0 '€V y'eV;
[1 — exp <_Ti—%,i+%>} exp (_Ti+%,j—%) [1 — exp (_Tj—%d-‘r%)} . 4.11)
Three other cases may be considered, namely >; = 0 which leads to:
Bii = ;/MdQQ/ da:’/ dy' AR;exp(—T;, 1 ;1) [l—exp(—T» 1 1)] (4.12)
J 471—2] o eV, vV, 1+§,J—§ J—3%.J+3% ?
since the exponential is now independent of R’, ¥; = 0 which gives:

1 47
= —— [ d®Q da’ dy AR; exp(—7;, 1 . [1— Y } 4.13
Pij Ay, /0 /;uev}, ) /y/evi Y 5 exp( T“r%’ﬂ*%) exp( Tl*%aw%) 4.13)

since the exponential is now independent of . Finally when both 3; and X; vanish, the exponential function
becomes independent on both R and R’ and we obtain

1 47
]51'3' = —/ dQQ/ d;p’/ dy/ARiARj eXp(fTH_; j—l)' (4.14)
am 0 z' eV, y'eV; 2
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In the case where ¢ = 7, the expression for p;; can be written as

1[4 Ry i

S 2 / / 2 / ¥ /-

Dii = / d Q/ dx / dy / dR / dRexp(—%;(R' — R))
ar Jo Vi Y EV; R,y Ry

1 [ Rirs Rirg
+—/ dQQ/ dx’/ dy’ / dR’/ dRexp(—%;(R— R))
A Jo '€V, y'EV; L !

The integrals over R and R’ then yields:

R, 1 R T 1,41 1
+3 i i+
/ dR// dRexp(—%i(R - R)) :# T y2 {1 - eXP(*ﬂ'—%,H%)} )

Ry o, (B3 ny  Timdart 1
1 dr" | dRexp(—%;(R— R')) =Ty T {1 - eXP(—Tif%,H%)} ;
and we obtain:

1 A7
= —— | d%Q da’ d/[,l.l—(1_ _,1.1)] 415
P 2”2%/0 /.T/e% ! /y/EVi Y Timsits exp Tl_§>1+§) (4.15)

Finally for the case where ; = 0 we obtain:

1 47
Pii = 4—/ 20 dx’/ dy' (AR;)?, (4.16)
™ Jo z’'eV; y' eV,

which is finite as in the 2-D case.
4.1.2 The leakage probability pY,,

The leakage probability p7,, is defined in Eq. (4.5). Here we will consider only the case where N, = 0, namely
the isotropic leakage probability. Using the notation of Figure 8 we can write:

Nv
7(R) = (Ri1y — RS+ Y ARy, (4.17)
k=it1
for the optical path associated with p;,. We will also have:
PO, N_) =1.

Using the notation for the surface integral presented in Eq. (4.2), one obtains after integration over R’:

1 4
~0 2 ’ ,

o = a0 d d -7 1= exp(=7;_3 141)] 418
P 47721’/0 /a:’evi ! /y/e% V' exp(Tit f.o) eXP(=7j-1 j+3) (4.18)

In the case where 3; = 0 the expression for 7(R) becomes independent of R’ and we obtain

1 47
= _/ dQQ/ da:’/ dy' AR; exp(—T; 11 ) (4.19)
4 Jo ' €V; Yy EV; >
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4.1.3 The transmission probability pgl,

Finally, for the transmission probability we will have:

Ny

T(R) =Y ARySk = Ta, (4.20)
k=1

for the optical path associated with pzZ. Using the notation for the surface integral presented in Eq. (4.2) the
transmission probabilities from surface S, to S, become:

1 471'
P = —/ dm/ d:c'/ dy’ exp(—Ta)- 421)
4 0 z'eV; y'ev;

For the other components of pif, the final relations will be similar to Eq. (4.21) except for the added presence of
the half-range spherical harmonic.
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S COLLISION PROBABILITY TRACKING IN DRAGON

The code DRAGON can be used to evaluate numerically the collision probability matrix associated with a
large number of different types of geometries.['*-!>] However because of the complexity of the required calculation
procedure, this work is generally divided between two different DRAGON modules. The first module, called the
tracking module, consist in selecting the specific numerical quadrature scheme that will be used to analyze a given
geometry and to generate the integration points and weights required for a specific problem. In the second module,
called the assembly module, the summation process associated with the numerical quadrature is performed. Here,
we will first present the specific numerical quadrature technique used for each possible type of geometries for the
various tracking options available in the code. The discussion on how the assembly module uses this information
to generate the required collision probability matrices will be presented in the next section.

5.1 Cartesian 1-D Geometries

The Cartesian 1-D geometries are generally used to simulate plate reactors in the case where the extension
of the plates in two directions can be assumed infinite while their extension in the third direction is finite. There
are two different tracking modules that can be used to analyze these 1-D geometries in DRAGON, namely JPM:
and SYBIL:. Both modules relies on the finite cell collision probability expressions even if, as we will see, the
SYBIL module simulates approximately an infinite cell.

5.1.1 The J+ model

We will first discuss the Ji model (module JPM:) where each individual region in the cell is considered
isolated in space (see Section 1.9). In this case, the collision probabilities can be evaluated by directly using
Eq. (2.20) (see Appendix A.4) and no additional numerical quadrature is required. For the cases where one region
in the cell to be analyzed is completely voided, a finite result of 1x 102° will be arbitrarily associated to the collision
probability even if this probability is theoretically divergent according to Eq. (2.22). The isotropic leakage and
transmission probabilities are evaluated using Eq. (2.25) or Eq. (2.27) and Eq. (2.36). When the more precise DP;
approximation is required (order IN,, = 4 expansion in the angular flux) the anisotropic components of the leakage
and transmission probabilities are also evaluated using Eq. (2.26) and Eqgs. (2.36) to (2.39). On the other hand, the
contributions to pg}; and ﬁgﬁy are never considered since they are not required to solve the transport equation for
the flux. This is because the terms coupling the v = 2, 3 components of the angular flux to the scalar flux vanish,
namely ﬁf,y = ﬁg’,y =0.

In DRAGON, the JPM tracking module (subroutine READ3D) essentially evaluates the regional 1-D volume
and associates with each region and surface an identification index. It also builds the boundary condition matrix
that includes the surface coupling terms and the external boundary conditions.

5.1.2 The standard model

For 1-D geometries, the SYBIL module of DRAGON is a hybrid between the standard collision probability
technique and the infinite cell collision probability method. It unfolds the geometry to infinity using the external
boundary conditions, but instead of using the summation relation described in Eq. (2.45), it evaluates explicitly
each path contribution to the collision probability using Eq. (2.16) and then performs the required summation. This
infinite sum can be evaluated because the exponential integral function decreases rapidly with increasing optical
path length. As a result, the contributions to the collision probability coming from neutron crossing an optical path
longer than a fixed cutoff 7o (with 7o = 10 in the SYBIL module) are neglected. One of the advantages of this
technique is to bypass the explicit numerical integration of the collision probabilities dictated by Eq. (2.44) while
avoiding the use of the approximate boundary conditions resulting from the treatment of a finite cell. The SYBIL
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tracking module will essentially perform the same functions as the JPM tracking module (subroutine READ3D is
used again).

5.1.3 The specular model

Because SYBIL already takes into account explicitly the effect of unfolding the cell to infinity, there is no
module of DRAGON that uses Eq. (2.44). However, for the sake of completeness, we will present a quadrature
technique that would ensure an adequate numerical integration of this equation.

Because of the apparent singularity of the integrand

Ti+ 1 j:i:l
— 2 2
Fi %,j %(’U/) = exp |:_ (—u ;

at u = 0, applying a direct trapezoidal or Gaussian quadrature is not recommended. A better choice consists in
using a double Gauss—Legendre quadrature with 2 x N¢ points u; such that:(??]

1— forl <i< Ng
Uy = )
1 —pong—iy1 for Ng+1<1i<2Ng
with quadrature weight W;:
W — W; for1 <7< Ng
L waNg—i+1 for Ng+1<1i<2Ng ’

where 1; and w; are the standard the Gauss—Legendre quadrature points and weights (see Appendix C).3!!

5.2 Annular 1-D Geometries

The annular 1-D geometries represent infinite 3—D cylindric cells with properties that are angularly uniform in
a 2-D plane and vary only as a function of the radial distance from the center of the cell. The collision probabilities
associated with these geometries will be computed using the relations provided in Section 3 for 2-D geometries.
Because of the inherent symmetry of this problem, the one dimensional integration over ¢ described in Egs. (3.8)
to (3.11) is generally evaluated analytically. On the other hand, the integration over i’ will be evaluated numeri-
cally, this integration taking different forms depending on the tracking technique used. Note that for annular cells
an explicit treatment of the boundary conditions via cell unfolding is not possible.

5.2.1 The J4+ model

As we noted in Section 1.9 both the collision and leakage probabilities associated with an isolated cell can be
derived from the transmission probabilities using the reciprocity and conservation equations. Accordingly, in the
application of the J+ model to annular 1-D geometries, we will only need to consider the integration of Eqs. (3.28)
to (3.35). As we noted above we will carry out the  integration analytically. As for the h’ integration we will
consider the following change of variable (see Figure 9):

h' = R, sin(e),

where R, represents the radius of the annulus associated with surface S, and ¢ is the angle between the track
direction and a radii to the same surface. The distance Ap,,, traveled by the neutron inside this region before
reaching surface .S, will be given by:

Apaa = 2R, cos(e),
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with the angular integration limits being:

=

V).

<e< — arcsin(R—
(e}

R
arcsin(—1) < e < g and -

ol 3

For a neutron reaching the internal surface S, we will have:
Apay = Ry cos(e) — \/R2 — RZ sin?(e),

—arcsin(—2) < € < aresin(—=71).
(03 (0%

with

Typically, for the numerical integration over €, one could select a standard Gauss—-Legendre quadrature. The
problem with this choice is that both the integrand and its derivatives must be finite over all the integration range.
This is not the case here since high order derivatives of the Bickley Nayler functions Ki,, () diverge when evaluated
atx = 0 (e = /2 for Apna). We will therefore use a second change of variable:

u = /1 —sin(e),
such that
cos(e)de = —2udu.

The general form of the integral will finally be such that it can be evaluated using a Gauss—Jacobi quadrature of

the form (see Appendix C):
N
/F(u)udu = Z w; F(u;),
i=1

where u; and w; are respectively the quadrature points and weights.>!]

5.2.2 The standard model

Again we can carry out the ¢ integration analytically. For the remaining h’ integration we will first use the
fact that for any direction ¢, if one defines the origin of the /' axis as the center of the concentric annular cell, the
integration becomes symmetric under a transformation from A" — —h’. Accordingly, p;; will be given by (see
Figure 10):

2
5.5,

for the contribution of neutron in region ¢ and j both located in the first quadrant (upper right quadrant) while
the neutron generated in the part of region ¢ located in the second quadrant (upper left quadrant) will produce an
additional contribution to the collision probability given by:

R;
By — /O an’ [Kig(ri_y j4p) — Kis(mi gy 3) = Kis(7ip . 514) + Kis(rig 53]

_ 2 [ . . . .
pij:ﬁ/o dh’ [K13(77i7%,j+%)_Kl?’(Tfif%,jf%)_K13(Tfi+%,j+%)+K13(Tfi+%,j7%) s

where R; represents the outer radius of the annulus associated with region V; and

A
Toioi s =2 Sp0R (W) 4 Tip1 e, (5.1)
k=l
i—1
Toiviger =2 SpORp(W) 47,1 i, (52)
k=l
J—1
Toad gt =0, 1 it Si6R(W) + Y Sk0Re(R) 40511 501 550R; (), (53)

k=i+
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SRy — VR —h*— /R | —h? forRk,lzh"
\/Ri — h? for R < 1%

If one classifies the regions from the inside to the outside of the cell consecutively, then the above relation
becomes:

where

i

R 2 fix : : : :
Dij = E—EJZ/R dh’ |:K13(Ti_%7j+%) _K13(Tz‘—%,j—%) —K13(Ti+%7j+%) +K13(Ti+%,j—%)
) =1 e
+K13(T—i—%7j+%> — Kis(7 —1——,]——) Kis(7 —1+%,j+%)+Ki3(7——i+%,j—%) , 54)

where Ry = 0. Since the integrand is a function of /R — h?, its first derivative will be singular when h = Ry,
and consequently a Gauss—Legendre quadrature is not recommended. Here we will perform a second change of
variable of the form:!*!

B =t*+ Ri_,,
and rewrite Eq. (54) as
R Rk 1 . . .
Py =55 Z/ tdt[Klg( 1) = Kis(ry_1 5o 1) = Kis(rip1 541) + Kig(rpn ;1)
k=1
+ Kig(7_i_1 jy1) = Kis(r_1 1) = Kis(r_ip 1 1) + Kis(7_i41 1) |, (5.5)

This can now be integrated without problem using a Gauss—Jacobi quadrature.

In this module we will assume that there is a single external surface associated with the geometry. We will also
limit the half-range spherical harmonic expansion for the angular flux to order N, = 0. Accordingly, the leakage
and transmission probabilities will be obtained directly from the collision probabilities using the reciprocity and
conservation relations.

5.3 Spherical 1-D Geometries

A spherical 1-D geometry represent a 3—D cell that has properties which are angularly uniform and vary
only as a function of the radial distance from the center of the cell. The collision probabilities associated with such
geometries will be computed based the relations described in Section 4 for 3—D geometries. Because of the inherent
symmetry of this problem, the angular integration over d2) described in Egs. (4.4) to (4.7) is generally evaluated
analytically. On the other hand, the integration over 2’ and y’ will be evaluated numerically, this integration taking
different forms depending on the calculation option considered. Note that for these cells an explicit treatment of
the boundary conditions via cell unfolding is not possible.

5.3.1 The J4+ model

In our application of the J1 model to spherical 1-D geometries, we will only discuss here the integration of
Eq. (4.21). The final expressions for the anisotropic components of the transmission probability which are similar
to those obtained for the isotropic component will not be presented here.!'”! As we noted above we will carry out
the d?€) integration analytically. As for the 2’ and 3/ integration we will consider the following change of variables

(see Figure 11):
/dx’/dy’F(x',y') = R2/dgp’/sin(&’)dﬁ’F(gp',@’)
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which will lead to:
™ Pt
/ dQQ/dx’/dy/F(:v’,y’) = SiD/ d<p'/ sin(0")d0’ [F(¢',0") + F(—¢',0")]
4 0 ©b
For the contributions to p2°, we will have:

AR =2R,, cos(8)

= arcsin &
Py = R,

Vs
Pt 25

while

AR =R, cos(8') — \/R% — R2sin’(¢)
ep =0

= arcsin &
Pt = R,

for contributions to f)gg and we assumed that R, < R,.

Because of the form of F(¢',6’) the final two integrations can always be evaluated numerically.'”! As an
example for 50 we will obtain:

5O = 2% (1 — exp(—2%;2)[1 + 2%;2])

with 2 = /R2 — R2
5.3.2 The standard model

Again we will carry out analytically the d?(2 integration. For the remaining 2’ and ¢’ integration we will use

(see Figure 12):
27 R1 Rz
/dx’/dy’F(:E’,y’) :/ dgo’/ Rdh'F(h'") = 27r/ h'dh'F(h")
0 0 0

with the origin of the i’ axis taken as the center of the concentric spherical shells. Accordingly, p;; will be given
by:m

. 27 R
Bij _ﬁ/o K dn’' exp(fTH_%J—_%)

1T—exp(=7_1401) —exp(=T;_1 ;11) + eXp(Ti—%,i+%)exp(7j—%,j+%):|

27 R
+Ei2j /0 h'dh exp(—7_; 1 ;1)

L—exp(=7_; 1 1) —exp(=7;_1 j 1) +exp(=T_;_1 ;1) eXp(—Tj_%,j+é):|
where R; represents the outer radius of the annulus associated with region V; and the optical path lengths are
identical to those defined in Eqgs. (5.1) to (5.3). If one classifies the regions from the inside to the outside of the
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cell, then the above relation becomes:

47 i V Ri_Ri—l 9 9
Dij =w / t(t + Ry_)dt
J k=1

(e_(T’*%fjé) I e e I T Mt S L
+e*(7_i+%,j—%) [1 _ e*(T—i—%,—H—%) _ ef(‘rj—%,j-%—%) + e(T—i—;—i‘*éJrTj‘é*j"'é)}) 5.6)

where the same change of variable as in the annular case was performed to avoid the divergence in the second
derivative of the integrand at h = Rj. Each sub-integral can will then be performed using, as before, a Gauss—
Jacobi quadrature.

54 Cartesian 2-D Geometries with embedded annular regions

Here we will consider the case where a rectangular region in 2-D can be subdivided into a number IV, x N,
of smaller rectangles over which the cross sections are assumed uniform. The size of each of these rectangles does
not need to be identical, however, they must be arranged to form a regular mesh in both the X and Y direction (see
Figure 13). In addition these Cartesian regions can also contain annular sub-regions similar to those described in
Figure 14. To each Cartesian region will be associated 4 surfaces denoted respectively as x4 and y as described
in Figure 15. Because of the symmetry of this problem, both the integration over ¢ and k" described in Egs. (3.8)
to (3.11) will generally be evaluated numerically (except for the J+ model where the i’ integration is evaluated
analytically), these integration taking different forms depending on the tracking method considered. Note that for
such geometries an explicit treatment of the boundary conditions via cell unfolding is permitted.

5.4.1 The J+ model

Here we will first concentrate on the evaluation of 1339, for purely Cartesian geometries which is given by

Eq. (3.28). For the geometry described in Figure 15 only three contributions are independent, namely ]520_@ b

P2 . and ) . The transmission from surface S,_ to S, is possible only if 0 < ¢ < ! where

got = arctan %
r Ax

and Az and Ay are the dimensions of the rectangle in the = and y directions respectively. In addition, for each
angle in this range the neutron will be able to reach the surface 2, only when 0 < b/ < H? such that:

H'(p) = Aycos(p) — Az sin(p).

The optical path traveled by the neutron is independent of 2’ and given by:

() = YAx
T cos(p)”

Accordingly we will have:

(5.7)

ol
W, = o [ o (ueoste) - Avsin(e)Kis (%)
o=,

cos(¢)

For the higher order contributions to p7# , ., the main difference is the presence of the factors v(y) = w(p) =

00

cos(¢). A similar relation can be obtained for p,°

by rotating the rectangle by —7 /2, namely

YAy >

sosle) (5.8)

B 1 ‘P; . :
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with ! = arctan(Az/Ay).
The second term we wish to consider is ]3207’“. According to Figure 15, the limits of integration over ¢ and
h’ now become:

¢ s
0 <h' < Azsin(p)
However, in this case, the optical path remains a function of /'
b
cos(y) sin(p)

We can now integrate the expression for the collision probability over h’ and obtain:

Tolp ) = (Awsin(p) — K).

/2

1 XA
By = 55 |, dpoosle)sin(o) {Ku (0) — Kiy (F(z)ﬂ , (59)

For higher order contribution to this transmission probability, we will use v(p) = sin(y) and w(p) = cos(yp).
Finally, since the above function and their derivatives are all finite for the whole ¢ integration range we can use
directly a Gauss—Legendre quadrature.

In the case where Cartesian cells containing annular regions are considered, the problem is more complex
since there are additional restrictions on the specific geometries that can be considered. In fact, for these cases,
the geometry must be such that one can represent the cell by an assembly of Cartesian sub-cells with the annular
regions located at the center of one Cartesian sub-cell. Moreover, the annular regions must be totally located inside
a specific cell. Finally, the Cartesian sub-cells containing an annular region cannot be subdivided along the X
and Y axis. In this case the collision probabilities are computed in the following way. For the annular regions,
the results of Section 5.2.1 are used while for the Cartesian ring one uses a technique similar to that described in
Section 5.4.2 with opaque annular regions (infinite cross sections in the annular regions) to compute the collision
probability associated with the ring. Once this collision probability has been obtained it is simple, using the
conservation and symmetry relations described in Section 1.8 to obtain the required transmission probabilities.

5.4.2 The standard model

In this case we will evaluate py;, p}, and pO2, using Eq. (3.15), Eq. (3.23) and Eq. (3.28) directly. As one
can see this involves a 2-D integration which will be performed numerically. For the ¢ integration, we will limit
the range of integration to 0 < ¢ < 7 since the contributions to the integral arising from angles in the range
m < ¢ < 2w will be associated with the probability p;; which are symmetric to p;;. For a N¥ points angular
quadrature the weights and points w; and u; will be selected as follows:

U (5.10)

% — 1
UZ-”=< 22 )w?’ (5.11)

For the 7’ integral, we will select a trapezoidal quadrature set. Moreover this set can be made independent of
the angular set in the following way. Assuming that the center of the cell is located at (z.,y.), then one will
have —h, < h/ < hy where h is the radius of the smallest circle centered at (., y.) surrounding the cell (see
Figure 16). Selecting a tracking density of dj, will be equivalent to selecting N" spatial points such that:

NM = (2dphy) +1 (5.12)
As a result the effective spacing between the tracks is given by:

 2hy

h
o - Nh

(5.13)
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and the quadrature weights and points will be given by:

h _gh (5.14)

7

u?z(Zi_l)éh (5.15)

w

2

A tracking line will then be associated with each quadrature point (u?, u”

7 u;") and followed as it travels through
the cell. One will then identify the successive external surfaces and regions crossed by this line and evaluate the
distance the neutron will travel inside each region. Note that there will also be a track length of 1.0 associated
with each external surface. This information will then be saved on a binary tracking file in the format described in

Appendix D.1. In DRAGON, XELTI2 is the main tracking routine associated with this type of geometry.
5.4.3 The specular model

In this case we will evaluate p;; using Eqs. (3.38) or (3.40). As one can see this involves a 3-D integra-
tion which will be performed numerically.[?>*28] For the u integration we will use a simple Gauss—Legendre
quadrature. For the ¢ and h’ numerical integration, the problem is more complex than for the standard collision
probability method. As we discuss in Section 3.2, in order for the infinite line contribution proportional to 7, to
exist, a neutron starting at a point (¢;, h}) in the integration plane must be able to cross this same point again after
a finite number of cell crossing. Two options can be considered to reach this goal. One can select the angles and
adjust the '’ integral or the reverse. Here we have considered the first option. Since both reflective and periodic
boundary conditions can be selected, the set of angles we choose should reflect this possibility. Accordingly, for
each quadrature angle 0 < ¢; < 7 there must exist a symmetric angle ¢; which represents the mirror reflection
of the initial angle on an external surface. In the case where 2/N¥ angles are selected, we will have the following
integration points:

7 = cos(pi) = —= (i=Day _ (5.16)
V(i —1)2(Ay)? + (N¢ —i)?(Az)?

with ¢ = 1, N¥ for the range 0 < ¢; < 7/2 and

= cos(o) = — (=i —1)Ay
) S TR a T (e T P 4D

with ¢ = —1, —N¥ for the range 7/2 < ¢; < 7. In the above Az and Ay are the width of the cell in the X and
Y directions respectively. Note that the change in the neutron direction from a reflection on a plane normal to the
X -axis will result in a change in the integration angle from ¢; — ¢_;. In DRAGON the quadrature points v} are
evaluated in the subroutine XELTSA. The integration weights associated with these points are defined in such a
way that:

N?® /2

2 .2 (2k — 1)!!

= (P k _ = 2k _\ev

- E w;(v)) 77/0 cos™ (p)dy OBl (5.18)
i=1

where
(2k — 1)!
S Y | S 7 A -
(2k — )N T (= 1] I1x3x5x---x(2k—1)

(2K =2 k!l =2 x4 x 6 x --- x (2k)

These weights are computed in DRAGON using the routine XELTSW.

For the h' integral, we will select a trapezoidal quadrature set. However this set will depend on the specific
choice of ¢; because of the requirement that a given integration line must be able to return to its starting point.
In order to illustrate this problem, let us consider Figure 17 where a basic cell has been unfolded to infinity
using periodic boundary conditions. The tracking lines Lo and L. 3 represent respectively the case where the
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quadrature points ¢ = +2 and ¢ = £3 have been selected (here N¥ = 4). For 1 < i < N¥, the number of surfaces
perpendicular to the X -axis crossed by a track before returning to a location in the cell identical to the starting
point is N¥ — |i|. The number of surfaces perpendicular to the Y -axis will be |i| — 1 for a total of N¥ — 1 surfaces.
In the case where 7 = 1 and 7 = N¥, the total number of surfaces becomes 2 these being perpendicular to the
X-axis (¢ = 1) or the Y-axis (: = N¥). We can also see that each tracking angle will generate parallel lines in the
original cell which are separated by a distance 0, ;. The obvious choice for the &’ quadrature is therefore to select,
for a specific tracking direction, a track spacing Ah’ such that it generates lines for a startup position 2} which
coincide with those associated with a different startup position h + kAh’. Accordingly the maximum value of
Ah' which will satisfy this condition is:

AW = Arly (5.19)

V(i = 1)2(Ay)? + (N¥ —i)2(Ax)?

For the specific choice of integration points we will then follow a technique similar to that described in Sec-
tion 5.4.2. Thus, for a specified tracking density dj, we will first select the effective track multiplication factor
as:

n" =d,AR +1 (5.20)
from which the effective track spacing is computed using
AR
== (5.21)
n

which results in a maximum number of parallel tracks given by

Nh = };—; +1 (5.22)
and quadrature weights and points given by Eqs. (5.14) and (5.15) respectively.

In the case where the boundary conditions represent total reflection, the same technique will be used with the
difference that selecting only the angles located in the range 0 < ¢; < /2 automatically produce the angles in the
range 7/2 < ¢; < 7 by reflection as seen in Figure 18. In addition, the number of surface crossing in both the X
and Y planes are doubled in this case for each angle. The cases where mixed boundary conditions are considered
can also be treated in much the same way.

Again a tracking line will be associated with each quadrature point (v{, v*) and followed as it travels through
the cell. One will then identify the successive external surfaces (both the surface by which the neutron leaves the
cell and reenters it) and regions crossed by this line and evaluate the distance the neutron will travel inside each
region while following the track. Note that there will also be a track length of 0.5 associated with each external
surface. This information will then be saved on a binary tracking file in the format described in Appendix D.1. In
DRAGON, XELTS?2 is the main tracking routine associated with this type of geometry.

5.5 Hexagonal 2-D Geometries with embedded annular regions

Here we will consider only the cases where a 2-D geometry can be subdivided into a number N of hexagon
which can contain centered annular subregions (see Figure 19). To each hexagon will be associated 6 surfaces as
described in Figure 20. Because of the symmetry of this problem, both the integration over ¢ and h’ described in
Egs. (3.8) to (3.11) will generally be evaluated numerically (except for the JL model where, in addition, the A’
integration is evaluated analytically) Note that for such geometries an explicit treatment of the boundary conditions
via cell unfolding is not permitted.

5.5.1 The J+ model

Here we will first concentrate on the evaluation of ﬁgﬁy for pure hexagons which is given by Eq. (3.28). For the

geometry described in Figure 21 only three contributions are independent, namely 527, . . pao o, and p20 _ . The
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transmission from surface Sy to S7 is possible only if 0 < ¢ < 7/6. In addition for each angle in this range, the
neutron will be able to reach the surface S; only when 0 < A’ < H'! such that:>!

H'(p) = & (cos() — VBsin())

The optical path traveled by the neutron is independent of 2’ and given by:

©) V3L H
T. = —.
M cos(p)
Accordingly we will have:
1 [ " V3LH
00 _ H _ : ;
Dsgs1 = 277/0 dy 5 (cos(cp) \/§sm(g0)> Kis (COS(QO)) , (5.23)

For the higher order contributions to p¢# , the main difference is the presence of the factor v(yp) = w(p) =
cos().

The second term we wish to consider is p
now become:

00

4.5, - According to Figure 21, the limits of integration over ¢ and h’

IN
IN

w3
=

@
h <

o o9
IN

with - -
H*(p)=H (cos(go - E) — 2sin(p — 6))

However, in this case, the optical path remains a function of h':

Y

cos(p) sinle) (Axsin(p) — h').

Ta2(p,h') =

We can now integrate the expression for the collision probability over i’ and obtain:

1 /3 YAz
~00 . . .
S d Kia (0) — Kig [ =22 )], 524
P =g | deeosto)sinte) [Kia 0~ i (05| (524
Finally, let us consider p3° ... The limits of integration over ¢ and /’ are:
3=7=2
0<h' < H?

with . -
H () = H (cos(p — 5) — Vsin(p — 7))

The optical path remains a function of h':

by
Ta3(p,h') =

= cos(2) sin() (Azxsin(p) — h').

We can now integrate the expression for the collision probability over ' and obtain:
/2

1 YAz
00 _ N . e
M= 55 | decostepsina) [Kia0) i (255, 529
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For the higher order contributions to py* . and pg¥ ., the main difference is the presence of the factor v(y) =
sin(y) and w(p) = cos(p). Finally let us discuss the numerical quadrature used. Since the above function and
their derivatives are all finite for the whole  integration range we can use directly a Gauss—Legendre quadrature.

In the case where hexagonal cells containing annular regions are considered, the collision probabilities are
computed in the following way. For the annular regions, the results of Section 5.2.1 are used while for the hexag-
onal ring one uses a technique similar to that described in the Section 5.5.2 with opaque annular regions (infinite
cross sections in the annular regions). Then, using this collision probability and the conservation and symmetry

relations described in Section 1.8, the required transmission probabilities can be obtained.
5.5.2 The standard model

In this case the tracking will be performed as described in Section 5.4.2 with the following differences. The
integration range 0 < ¢ < 7 will be further subdivided into two region, namely 0 < ¢ < w/2and 7/2 < ¢ < 7.
For the case where an N ¥ points equal weight angle quadrature is specified in DRAGON we will have in fact 2N ¥
weights (w{) and points u; defined as follows:!**!

s

P _
wf =55 (5.26)
uf:(Z’;l)wf (527)

Wiy =w) (5.28)

2t —1 T
UNe i = <T) wf + 5 (5.29)

For the A/ integral, we will also select a trapezoidal quadrature set. This set will again be made independent of the
angular set in the following way. We will select the smallest circle surrounding the cell (see Figure 22), namely for
an assembly made up of N, rings of hexagon each having the same dimension H specified by the width of one of
its sides, we will select 7}, as follows

H\/1+3(2N.—1)?

Th = 5 (5.30)

Selecting a tracking density of d;, will be equivalent to selecting N" spatial points such that:

NP = (dpry) +1 (5.31)

As a result the effective spacing between the tracks will be given by:

§h — % (5.32)

and the quadrature weights and points will be given by:
wl =" (5.33)
u?<2i21)5h (5.34)

The evaluation of the collision probability in this case proceeds as in Section 5.4.2, the main difference being that
the tracking routine associated with this type of geometry is TRKHEX.
5.6 Cells Containing 2-D Pin Clusters

This case is similar to that described above with the additional possibility of having a second set of annular
regions which are superimposed over the basic Annular, Cartesian/annular or hexagonal/annular geometry (see
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Figure 23). These types of geometry can first be analyzed using the standard collision probability model using a
technique similar to that described in Section 5.4.2. The main difference here is that the angles are selected in the
range 0 < ¢ < 27. One also assumes in these cases that the origin of the A axis is located at the center of the cell,
the quadrature being performed only over positive h values.

In addition, the Cartesian/annular cluster pin geometry can also be analyzed using the infinite collision prob-
ability method. In this case the technique is identical to that used in Section 5.4.3. For pin cluster geometry, the
tracking in DRAGON is performed using the XCWTRK routine.

5.7 Cartesian 3-D Geometries with embedded annular regions

Here we will consider the case where a 3—D Cartesian region is subdivided into a number N, N, N, of smaller
Cartesian sub-regions over which the cross sections are assumed uniform. The size of each of these regions does
not need to be identical, however, they must be arranged in such a way as to form a regular mesh in both the X,
Y and Z direction. To each Cartesian region will be associated 6 surfaces denoted respectively by 4, y+ and 2
as described in Figure 24. In addition such geometries can contain embedded annular sub-regions similar to those
described in Figure 25. Note that for such geometries an explicit treatment of the boundary conditions via cell
unfolding is not permitted.

In this case we will evaluate p;;, iy, and 02 using Eq. (4.11), Eq. (4.18) and Eq. (4.21) directly. As one can
see this involves a 4-D integration which will be performed numerically. For the integration over the solid angle
2, we will consider only the upper half-sphere, namely

0<ep<2r
0<6<m/2

for Q@ = (p,0). This is because the contributions to the integral arising from €2 directed towards the lower half-
sphere will be associated with the probability p;; which are symmetric to p;;. Here the integral over the solid angle
€ is discretized using the equal weight EQ quadrature technique developed for .S,, method.!'-** Each angle €;
will therefore be written in terms of is director cosines:

Q= (COS(QIJ)’ COS(vai)a COS(QZJ)) = (uriv Uy uzi)

such that
ul; + Uiz +ul; =1

For a N*! solid angle quadrature, N}( N*? + 2)/2 weights and points will be selected in the upper half-sphere.

There still remains the problem of discretizing the dz’ and dy’ integral over a plane normal to the direction §2
(see Figure 26). The limits of integration for these integrals will be specified in such a way that they are independent
of the specific integration direction. Accordingly, after locating the center of the cell (.., y., 2. ), we will compute
h, the radius of the smallest sphere centered at (., ye, 2.) surrounding the cell. Then the integration limits will
be given by:

—h+ SJ}/ S h+
—hy <y’ < hy

Selecting a tracking density of dj, will be equivalent to selecting N spatial points such that:

N = (2¢/dphy) + 1 (5.35)
As a result the effective spacing between the tracks will be given by:

_2h

*=N

(5.36)
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and the quadrature weights and points will be given by:

wy; = 67 (5.37)
w = <2’2_1)5h (5.38)
u = <%) 5" (5.39)

A final point concerns the specific location of the x’ and y’ axis. The (2’,4y’) plane is defined arbitrarily with
respect to the direction {2 which represents a 2’ axis. A rotation of the plane around the 2’ axis will yield a new
plane which can also be used for the da’dy’ integration. However the integration lines associated with this new
plane will be located at different positions in space.

The explicit location of the 2" and ¢’ axis could be selected using various criteria. In DRAGON, because of
the need to insure that this surface integral for a single cubic cell is invariant under a rotation of the integration
plane, the following criteria has been selected. For each direction €2 three different integration planes were selected
and tracked successively. As a result the weight associated with each track direction had to be reduced by a factor
of 3. The plane were selected in such a way that the =’ axis would lie successively in the (z,¥), (z,z) and y, 2
planes (see Figure 26). Defining &J; , &, and &), to be the unit vectors defining the direction of the axis z’, y" and
2’ respectively, we can then write:

Uyi Ugi
@ = vt = ,0
i \/l—u \/1—uzz
Ui U Ui U
a—j/ xi Wz yr z1 ,— 1_u2
Y VI—4d2, 142, =

Wz = (UTU ina uzi)

in the case where the x’ axis is in the x — y plane, and

uZl uI’L

B 2 0, 2

\/1—%. \/1—uyi
. Ugi U Ui U
w/ _ x1 yz 21 uz
y \/

,/1—uy2 ,/l—uy7

w, :(um'vuyiauzi)

or

u_)./ _ 0 Uzq uyi
* ’ \/1 — u \/1 — u

LU/ _ Uy U UziUgi
vV e e

= (uwi7 Uz 5 uzi)

for the case where the 2’ axis is in the 2 — x or y — z planes respectively.

In DRAGON, the resulting tracking, which is performed by the XELTI3 routine, proceeds as follows. For
each quadrature directions, &’ a set of parallel tracking lines will be followed at they travel through the cell. One
will then identify the successive external surfaces and regions crossed by these lines and evaluate the distance the
neutron will travel inside each region while following these tracks. This information will then be saved on a binary
tracking file in the format described in Appendix D.1.
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5.8 Hexagonal 3-D Geometries with embedded annular regions

Here we will consider only the cases where a 3-D geometry can be subdivided into a number Ny of hexagon
which can contain centered cylinders (see Figure 27). In this case the tracking will be performed as described in
Section 5.7 with the following differences. The EQy integration over the solid angle €2 will be replaced by double
Gauss-Legendre quadrature over 0 < 6 < /2 and 0 < ¢ < 2. The surface integral dz’dy’ will be replaced by
an integral over dudh. Here the dh integral is located in the 2-D = — y plane as described in Figure 22 while the
du integral defines the angle between the plane and the z axis (see Figure 28). The integration limits for the dh
integration will be defined as in Section 5.5.2. For the du integration we will use

- (g + co:(La)> sus (g * coZEe)>

where for N, concentric rings of hexagon we will have:

H\/1+ 32N, —1)2
Th = + ; ) (5.40)

Namely, for the u integration limits, we will consider a projection on the plane v — v centered at u = 0 of a cylinder
of height H capped with hemispherical regions of radius r,.*3
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6 COLLISION PROBABILITY INTEGRATION IN DRAGON

Once a specific geometry has been tracked in DRAGON, there still remains the problem of processing the re-
sulting tracking file and to generate the multigroup collision probability matrices associated with a given problem.
In the code DRAGON, this processing is generally divided into three steps. The first step consists in integrating
explicitly the multigroup collision probabilities. This is followed by a normalization step where the conservation
properties associated with the collision probabilities, (see Section 1.5) which may have been broken because of
the use of a numerical integration procedure, are restored. Finally, the last calculation step that needs to be per-
formed consists in building a complete collision probability matrix which includes the boundary conditions (see
Section 1.7).

6.1 Collision Probability Integration Module

Here we will discuss only the collision probability integration module associated with the EXCELT tracking
module of DRAGON. The reason for this restriction is that it is the most reliable collision probability integration
technique of DRAGON. Moreover, it uses the standard EXCELL binary tracking file defined in Appendix D.1. It
can also treat explicitly voided regions. Here we will discuss briefly the general technique used for the integration
of collision probability in 2-D and 3-D geometries when isotropic boundary conditions are used. We will also
present the integration method used when a 2-D specular tracking is considered.

In the following, we will use, for simplicity, the notation W"”=WEIGHT and L™"'=SEGLEN(II) for the
integration lines stored on the binary tracking file. The index n = 1, N denotes the track line number and the
index m = 1, M a given segment of an integration line.

6.1.1 Isotropic Collision Probability in 2-D

In this case DRAGON uses the PIJI2D integration routine. The first step in this routine consists in scanning
the integration line and computing the contributions to ¥2;; proportional to Kiz(0) (see Eq. (3.19)),

%2? pii = Z W"Kip(0) Z . (6.1)

met

In the above, the presence of the factor 2 is justified by the fact that the W™ include, in addition to the angular and
spatial integration integration weights, a factor of 1/(27). Here we have used the following definition for 7,
TZL’Im — ZiLn,m with m € i. (62)

This is then followed in PIJI2D by a second scan of the integration line, where one adds to the collision proba-
bilities associated with region ¢, the contributions proportional to Tiolj+d (see Eq. (3.19)):

Si%pi =y Y (6.3)

n mej

where
p = W (Kig (™) = Kis(ry ™)) (6.4)

)

s M+1
n,O_Tn7 + — 0 and

with 7,7 = i

ij

rg’m = Z Y L™ form > Oand with{ € kK and m € j. (6.5)
1=1
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The same term also contributes to the leakage probability associated with the first surface o encountered by the

track (see Eq. (3.23)):
Sibja == _ k" (6.6)

n mej

Finally, once the last segment of the integration line is reached, one can compute the contribution to p;3 and p,g
where (3 is associated with the last surface encountered by the track and ¢ and « are the first region and surface
encountered by this same track respectively. We will then have:

Sipip =y > wpMt 6.7)

n mej

Pap=—>_ Y mtth (6.8)

n mej

The integration line will then be scanned a third time to compute the contributions to p;; corresponding to the
remaining regions in the cell. In this case, a two levels sweep will be considered, namely, for an initial line
segment m, the line will be analyzed for each segment m’ = m, M. We will then compute:

n,m,m’ n . n,m,m’ n,m,m -1
Kij =W (K13(Tij ) —Ki ( )), (6.9)
where 7'" mm—l _ TZ’m’MH = 0 and for m’ < M we have used
m’ —m—+1
promm Z SR form—1+1€k,meiandm’ € j. (6.10)

nmm

The term x;; contributes to two different collision probabilities, namely

SiSipi = >y > A, (6.11)

n meim’€j

SeSipey =y Y. YR (6.12)

n m—1€i’ m’'ej

corresponding respectively to the terms 7, mym,m’

Ty 1l and T Tipl 1 in Eq. (3.15). In addition the value of Kij
associated with the last line segment m’ = M + 1 also contrlbutes to the leakage probabilities p;z and ;g where

(3 is the last surface reached by the track:

Sibig =y rg M (6.13)

n mei

'pz’ﬁ — Z Z nm]ﬂ-&-l (614)

n m—1€d/

Finally, the last line segment corresponding to m = m/ = M contributes an additional term to p;g of the form:

XD = Z ’fn ML (6.15)

corresponding to Titla = 01in Eq. (3.23).

Note that the above relations yield vanishing results for all the collision probabilities >J;3;p;; when the cross
sections associated with region 7 or j vanish. A similar result is also obtained for the leakage probabilities X ;P
when region j is voided. Accordingly, the above calculation will always be performed in DRAGON even if they
are not strictly required for voided regions.
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In the case where one or more region is voided, the integration process will be repeated but using a slightly
different algorithm. Here we will consider only the two levels sweep of the track. For an initial line segment
m, the line will first be analyzed for segment m’ = m, then for the remaining segments m’ = m + 1, M and
m’ = m — 1, 1. For the case where m = m/ we will use (see Eq. (3.20)):

1. Ki; (0) nma 2
§pii:zn:WnT Ze(Tl ). (6.16)
For the line segments m’ # m we will first compute:
nmal _ wn (rmy? Kiy (777" oy if region 7 and j are voided 617
Y —wnrhm (KIQ( ") = Kig (™ 71)) if only region i is voided '

where we have used the definition of Eq. (6.2) for 7;""™", Eq. (6.10) for T;;’m’m/ with m’ > m while in the case
where m/ < m we will use:

m—m'+1

’”"m— Z SRl M form! —1+1€k,meiandm’ € j. (6.18)

These will generate contributions to the collision probabilities of the form:

Pij = Z Z Z Kif ! —mt1 if region ¢ and j are voided and

n meim eg

2ibij = Z Z Z Kig ' =mEL i only region i is voided,

n meEim eg

while the contribution to the leakage probabilities associated with the first («) or last (3) surface will be given by
ﬁja Z Wn n,m, 0,

~ o n an+1
pjﬁ_ZW Kij

n

A final comment here concerns the fact that the integration procedure we used above for computing the various
probabilities is not complete since we have considered only the contributions with m < m’ orm > m/. As a
result the collision probabilities will contain only half the possible contributions which should have been included.
Since the probabilities p;; should be symmetric, then all the contributions added to p;; for ¢ # j should also
have been included in p;;. Moreover, there is a factor of 2 missing in the expressions we used here for p;;. This
task of completing the collision probability matrices for the isotropic 2-D integration module is performed in an
independent routine called PIJCMP.

6.1.2 Isotropic Collision Probability in 3—-D

The DRAGON integration routine used in this case is PIJI3D. The first step in this routine consists in scanning
the integration line and computing the contributions to E?ﬁii (see Eq. (4.15)),

]- 2~ n n,m n,m
5 Sipii Z w ze: — K™ (6.19)
where
k™ =(1—exp[—7,""]), (6.20)

T =, L™ w1th m € i, (6.21)

2
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and the presence of the factor 2 above is justified by the fact that the W™ include here a factor of 1/(4).

This is then followed in PIJI3D by a second scan of the integration line, to compute the contributions to p;;
corresponding to the remaining regions in the cell. In this case, a two levels sweep will be considered, namely, for
an initial line segment m, the line will be analyzed for each segment m’ = m + 1, M. We will then compute:

DN 7ZW"Z D7 wpmgrmLm =1 s 6.22)

meim’eyj

using
- ﬁ exp |- (6.23)

where ;"™ and 7;" " are defined in Egs. (6.20) and (6.21) respectively.
The contrlbutlons to the leakage and escape probabilities are also computed using similar relations:

S ibia = Z Wy gt (6.24)
mei

zpzﬁ — Z wn Z an M nml, M (6.25)
meq

Dap = Z Wngm LM (6.26)

where a and (3 are respectively the initial and final surface associated with track n.

In PIJI3D, the case where one or more region is voided is treated independently. The general procedure is
similar to that above with the following differences. For the evaluation of p;;, where 7 is a voided region, instead
of using Eq. (6.19), we will consider the following relation:

p” Z Z o) (6.27)

meq

where
g = [ with m € 1. (6.28)

For the remaining probabilities we will still use Eq. (6.22) or Eqs. (6.24) to (6.26), however for a voided region &
the terms of the form ;""" will now be replaced by ;",".

This integration procedure is not complete since we have considered only the contributions with m < m’. The
task of completing the collision probability matrices for the isotropic 3-D integration module is performed in this
case directly in the routine PIJI3D using a procedure similar to that used in PIJCMP.

6.1.3 Specular Collision Probability in 2-D

The DRAGON integration routine used in this case is PIJS2D. The procedure used here is similar to that
used for the 3—D isotropic collision probability integrator since the 2—-D specular integration involves exponential
terms rather than Bickley Nayler functions as is the case for the 2—D isotropic integrator. The first step in routine
PIJS2D therefore consists in scanning the integration line and computing the contributions to %2p;;,

22~WZW”\/ (um) Z ™y (6.29)

meL

where u” is the Gauss-Legendre integration point for the u integration in Eqgs. (3.38) or (3.40) associated with this
track (see Section 5.4.3) and

n

k™ =(1—exp[-7,""]), (6.30)
n,m __ Zszm

T = for m in region 7. 6.31
1 o g 631)
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One can note again the presence of the factor 2 that has been justified above. During this stage of the integration
we will also compute the global attenuation factor I'™ associated with a complete track cycle using:

1 M -1
= {1 _ Bexp (%mﬂ - (1 -1I fy”’m> , (6.32)
m=1

nmy g . o
e exp [—7;"™] for m in region i

where

Ba for m on surface o

where (3, is the reflection (albedo) or transmission coefficient on surface a.

This is then followed by a second scan of the integration line, to compute the contributions to p;; corresponding
to the remaining regions in the cell. In this case, a two levels sweep is considered, namely, for an initial line segment
m, the line will be analyzed for each segment m’ = 1, M. We will then compute:

%P = ZW”WZ 37 gy nm’ (6.33)
meim’' ey

using
LS m’ H ,yn m (634)

where ;"™ and 7;" ' are defined in Egs. (6.30) and (6.31) respectively.
Note that in the case where the line segments m/’ is located on surface « while m is still inside 7, we will have:

SiPia = ZW"\/ @2 3" N7 wpmgrmt =gt (6.35)

metm’Ex

while if both m and m' are associated with surfaces we will compute:

paﬁfzwn\/ﬁz ST wpmgnm L =L’ (6.36)

meam’/eS

In this routine the case where one or more regions are voided is treated in parallel with the non-voided regions.
The general procedure is therefore similar to that described above with the following differences. For the evaluation
of p;;, where 7 is a voided region, instead of using Eq. (6.29), we will consider the following relation:

p” Z AT () (637)

mei

where L
R = withm € 1. (6.38)
' 1— (um)?
For the remaining probabilities we will still use Eq. (6.33) or Eqs. (6.35) to (6.36), however for a voided region &
the terms of the form «;"" will be replaced by x}."/".
As for the routine PIJI2D, the integration pr(;cedure we considered is not complete since we have considered
only the contributions with m < m/. The task of completing the collision probability matrices for the specular 2-D
integration module is performed directly in the routine PIJS2D using a procedure similar to that used in PIJCMP.

6.1.4 Additional Considerations

The three routines we described above are called directly by the routine EXCELP and read explicitly the track-
ing file described in Appendix D.1. In the case where the tracks are not stored in a file but are kept in memory, the
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routines QTIJI2D, QIJI3D and QIJS2D are called via the routine EXCELL. In fact only the routine QTJI3D,
which has the same logical structure as PTIJI 3D, is available in the current version of DRAGON since the EXCELL
module is currently restricted to 3—D geometries.

Note that the explicit form of the collision probability computed in the routine PIJI2D,PIJI3D and PIJS2D
all depend on the presence or absence of voided region. In fact the collision and leakage probabilities associated
with non-voided region will be restored to their explicit from (p;; instead of ;X ,p;;) directly in the routine
EXCELP which calls these routines.

6.2 Collision Probability Normalization

Once the transmission, leakage and collision probabilities have been evaluated independently one can verify
if the neutron conservation relations described in Eqgs. (1.37) and (1.39) are satisfied numerically. In fact one will
generally obtains:

N, S N;
_ « 0
R; =%;V; — Izipaj - Z 25 Vipij,
a=1 =1
N, N;
Sy = S, ;
a=1 =1
or
Na N;
Ri=Py -5 By -5 By (6.39)
a=1 =1
No N;
Rs=Fp— ) Poup— ) Pi, (6.40)
a=1 i—1

where R; and R,, represent the numerical errors on the conservation law for regions and surfaces respectively and
we have used

Pij = ]Sji = X% Vipij
Poy = Pro= 2250,
Pig = Py = Zi‘/ip?ﬂ
Pap = oo = 22

Poj =2,V
~ S
Pog = IB

These conservation laws can be restored in DRAGON using different collision probabilities normalization
schemes which we will now describe.

6.2.1 Diagonal Normalization

The simplest normalization scheme that can be used to restore the conservation laws above while preserving
the symmetry relations consist in updating the diagonal entries of the collision and leakage {natrices.[ﬁ’m Using
this scheme, one can redefine the diagonal elements of collision probability matrix (P% and P2 ) as follows:

pD
Pii

pD
Paa

P;—R;, (6.41)
Poo — R, (6.42)
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Large changes implied by this normalization will result in large changes of the diagonal entries. For small values of
p;; this scheme may result in non-physical negative probabilities in the final collision probability matrix. Moreover,
this scheme cannot be applied to problems involving voided zones where >; = 0. This normalization is performed
in DRAGON using the routine PIJRDG.

6.2.2 Gelbard Normalization

Gelbard suggested a different normalization scheme, which is based on a correction using the collision proba-
bilities in the homogeneous limit.!?!-33! This scheme has been generalized to

. - 1 /- - -

P’t‘? =P — 5 (POiRj + PojRi — POiPOij> , (643)
. . 1 - - -
PaGa = Poa — §(P05Ra + PO(xRﬁ - POaPOBRs)7 (6.44)

where

This additive scheme can be applied even in voided zones. It will redistribute the corrections to the conservation
laws over the complete collision probability matrix. Corrections on the diagonal entries are now weaker than for the
previous scheme, but they may still produce negative probabilities. This normalization is performed in DRAGON
using the routine PTJRGL.

6.2.3 Multiplicative Normalization

Another way to reestablish conservation laws is to define weighting factors w; and w,, that will be applied to
the collision probability matrix in a multiplicative manner as follows:!?!}

N -

Paﬁ = wawﬁPag. (646)
This results in a quadratic system that we can solve for the weights. The main advantages of this multiplicative
normalization is to preserve the null probabilities as well as the relative size of the collision probability matrix
entries (since we have w; ~ 1) and the overall positivity of the matrix. However, solving the resulting set of

quadratic equations for the weight factors is generally a CPU intensive task. This normalization is performed in
DRAGON using the routine PIJRNL.

6.2.4 HELIOS type Normalization

Finally, there is also the possibility to use in DRAGON a simplified multiplicative normalization scheme which
does not involve the solution of a system of non-linear equations.”**! Instead of using Eq. (6.45) which involves the
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product of two weights functions, we will use:

P = (w; +w;) Py, (6.47)
P = (wa + wp) Paa- (6.48)
The conservation laws can be ensured by requiring that:
wp (pbb +y pab) = Poy + woPop — Y walap = Pob — »_ waPas, (6.49)
a a a#b

where the generic indices a and b run over the regions and surfaces. This system is solved in DRAGON for wy,
using an iterative process, namely, assuming that w” at iteration % is known for a # b we can write:

k1 _ Poy = 3 wa Pab

b Py + >, Pap
For k = 1, the weights w¥ = 0.5 are all identical, corresponding to the case where the collision probabilities are
already normalized. The solution for w**! is assumed converged when:

a
ukt — uk
max S S €
Waq

)

This normalization is performed in DRAGON using the routine PTJRHL.

6.3 Boundary Conditions

The specular integration procedure described above is such that the collision probabilities computed include
directly the effect of the boundary conditions (see Section 1.2). As a result, the leakage and escape probabilities
which are computed are not required for further DRAGON processing even if they are saved on the ASMPIJ data
structure.!'>) However, in the case of the isotropic integration procedure, the collision probabilities evaluated are
those associated with a cell isolated in space. For such cases, DRAGON follows explicitly the technique described
in Section 1.7 and computes the complete collision probability matrix which takes into account the boundary
conditions using the relation:

Piv =Py, + vaP:sPsv»
where
Pe, = (I-AP,) 'A= (A" —P,) ', (6.50)
and A is the reflection/transmission matrix.

The matrix P§ is generally computed in routine PTJABC using the last form of the above equation. However,
in the cases where vacuum boundary conditions are applied on different surfaces S, a slightly modified expression
must be used. The need for this modification becomes evident if one realizes that for such problems the matrix A
is singular and its inverse cannot be computed. These modifications can be illustrated in the following way.

If one assumes that vacuum boundary conditions are applied to the first n surfaces while for the remaining
surfaces reflection or periodic boundary conditions are considered. The matrix A and P, can then be written in

the form:
0 0
A= [0 AQQ] ’
Py P
A=
{Pm P22}
‘We can therefore write: )
1, (|1 0 T lo o0
(I-AP,) A= <[0 Ayl — PzzD [0 J . (6.51)

Accordingly, in the case where vacuum boundary are considered, we will replace the relation for P¢, described in
Eq. (6.50) by the form described in Eq. (6.51).
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Figure 1: Example of a Cartesian 1-D geometry
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Figure 2: Example of a Cartesian 1-D geometry duplicated to infinity using periodic boundary conditions
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Figure 3: Example of a Cartesian 1-D geometry duplicated to infinity using reflection boundary conditions
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Figure 4: Example of a general 2-D geometry
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Figure 5: Projection in the X — Y plane of the general 2-D geometry
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Figure 6: Example of a Cartesian 2-D geometry unfolded to infinity using periodic boundary conditions
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Figure 7: Example of a Cartesian 2-D geometry unfolded to infinity using reflection boundary conditions
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Figure 8: Example of a general 3-D geometry
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Figure 9: Integration variables for annular 1-D geometry in the J+ model
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Figure 10: Integration variables for annular 1-D geometry in the standard model
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Figure 11: Integration variables for spherical 1-D geometry in the J; model
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| Integration line

Figure 12: Integration variables for spherical 1-D geometry in the standard model

68



IGE-236 Revision 1
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Figure 13: Pure Cartesian 2—-D geometries allowed and forbidden in DRAGON
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Figure 14: Cartesian 2-D geometry with embedded annular regions allowed in DRAGON
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Figure 15: Integration variables for a pure Cartesian 2—-D geometry in the JJ1 model
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Figure 16: Integration variables for a pure Cartesian 2—D geometry in the standard model
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Figure 17: Tracking of an infinite Cartesian 2—-D geometry with periodic boundary conditions

73



IGE-236 Revision 1

12|21 1 1 1|2 2| 1
3 | 4|4] 3 3 3 314 4 3
3 | 4| 4] 3 3 3 3|4 4 3
1 2]z 1 1 1 IBEE N
12|21 1 1 1|2 2| 1
3 4| 4] 3 3 3 3| 4] 4 3
3|4 3/ 3 3 3| 4] 4 3
T2 1 7 1 21

Lz

Ly
1| 2)2] 1 1 7 1|2 2| 1
3 %4 3 3 3 3| 4] 4 3
3 4| 3 3 3 3| 4|4 3
2}, i 1 1 ] 2| 7
Ly L3
W

822

A w82

2,1

83,2 331
81

Figure 18: Tracking of an infinite Cartesian 2—-D geometry with reflection boundary conditions
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Figure 19: Example of a 2-D assembly composed of hexagon and allowed in DRAGON
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Figure 20: Surfaces definition for a 2-D hexagon in the J1 model
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Figure 21: Integration variables for a 2-D hexagon in the J model
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Figure 22: Integration variables for a 2-D hexagon in the standard model
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Figure 23: Cartesian 2-D geometry with pin clusters

79



IGE-236 Revision 1

Figure 24: A simple 3-D Cartesian cell
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Figure 26: Tracking for Cartesian 3—D geometry
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Figure 28: Integration variables for a 3—D hexagon
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APPENDIX A
PROPERTIES OF THE EXPONENTIAL INTEGRAL FUNCTIONS

A.1 Definition

The exponential integral functions are defined as:*"!

oo —t o —xt
En(z) =21 / CE / g
x 126 1 136

1 1/x
:/ tn—2e—x/tdt — xn—l/ tn—Qe—l/tdt
0 0

for n > 0. In fact, in the case where n = 0 the integral above can be evaluated analytically and we will have:

—x

e

They satisfy the following recurrence relations:

E,iqi(x) = % (e*z - xEn(x))

forn > 1.

A.2 Differentiation and Integration Formulas
The derivative of an exponential integral function is given by

d

%En (l‘) = _En—l (13)

for n > 1. This equation can be inverted to yield:

/En(:r)dx =—FEni1(x)
forn > 0.

A3 Series Expansion

The power series expansion for the exponential integral functions are of the form:
Eo(x) = o Z ] - Z S ) O )
n—1)! fnJrl ml 4~ (m—n+1)m!
They can also be represented by the following incomplete Gamma function:
E,(r) = 2" 'T(1 — n,z)

and their asymptotic expansions are:

oo

oz n—l'xm
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A.4 Numerical Evaluation

In the case where n > 1, one can evaluate explicitly the exponential integral at x = 0 using their definition.
This yields:
1

En(0) = n—1

For 0 < x < 1, the following power series expansion can be used for numerical evaluation purpose:
5 .
Ei(z) = —In(z) + Z a;z" + e(x)
i=0

where €(x) < 2 x 1077 for all x in this range if

Qi
—0.57721566
+0.99999193
—0.24991055
+0.05519968
—0.00976004
+0.00107857

N AW = O =,

For 1 < x < oo, the following rational approximation can be used:
_ 4 ;
e * . bifﬂz
Bilw) = S [ Zm0bt )
T\ Do Gt

where €(z) < 2 x 1078 for all z in this range if

bi C;
0.2677737343  3.9584969228
8.6347608935  21.0996530827

18.0590169730  25.6329561486
8.5733287401  9.5733223454
1.0000000000  1.0000000000

AW = O .

Finally for n > 1, the numerical evaluation of the exponential integrals can be obtained using the above
relations in conjunction with the recurrence relation described above.
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APPENDIX B
PROPERTIES OF THE BICKLEY NAYLER FUNCTIONS

B.1 Definition

The Bickley Nayler functions are defined as:!'>3!

sin 6

_ / Cu (VIZaE) e (M%) ,

for all n. Here, Kig(z) and Ki_;(x) are the modified Bessel functions of the second kind of order 0 and 1
respectively. They satisfy the following recurrence relations:

Ki, (z) = /O * 10 (sin )" exp [‘—“"}

n—2
n—1

Kin (2) = Kipoa(@) + | — | [Kin_s(2) — Kiq_1(2)]
( ) (n 1>

B.2 Differentiation and Integration Formulas
The derivative of a Bickley Nayler function is given by

d . .
%Kln(x) = —Ki,_1(x).

This equation can be inverted to yield:!!?!
Ki,(z) = / Ki,—1(y)dy

B.3 Series Expansion
The power series expansion for the Bickley Nayler functions are of the form:

2

Kin () = Kin (0) — 2Kip,_1(0) + %Kin,z(o) T

They also have asymptotic expansions of the form:

. e T an+1  3(16n% + 24n + 3)
K n = x —_— 1 — .
n(w) =5, { 8r 21(81)?

B.4 Numerical Values

In DRAGON the numerical value of the Bickley Nayler functions are evaluated using the subroutine AKIN10
which is adapted from the KIN routine written by P. Christie for AELIB. It uses rational Chebyshev approxima-
tions for Kig(z), Kig(x) and Kiyo(z) with a backward recursion formula when # > 6 and rational Chebyshev
approximations for Ki; (z), Kiz(z) and Kis(z) with a forward recursion formula when 0 < = < 6.
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APPENDIX C
GAUSSIAN QUADRATURES USED IN DRAGON

The general Gaussian quadrature methods are defined in the following way. One wants to select a set of [V
integration weights (w;) and points (x;) in such a way that the weighted integral of f(x) over = given by:

b N
[ H@gterds = 3" wif i),

is exact for the case where f(z) is a polynomial of order 2 * N — 1 or lower.*!] Here we will consider two special
forms of the Gaussian quadrature corresponding to the case where the weight function takes the value g(z) = 1
and g(z) = x corresponding to the Gauss—Legendre and Gauss—Jacobi quadrature respectively.

C.1 Gauss-Legendre quadrature

The integrations weights and points in the Gauss—Legendre quadrature are selected in such a way that:

1 N
/_ ) =Y wif (@),

is exact when f(z) is a polynomial of order 2 x N — 1 or lower. This can be ensured by selecting the x; for each
order N as the zero’s of the Legendre polynomials Py (x). Once the integration points have been computed, the
associated weights can be obtained using:

2
(1 —a3) [Py (z:))*

For the case where the lower and upper integration limits are a and b respectively one can use the following
transformation:

w; =

b N
[ fade = S uisa)
@ i=1
such that
, b—a
U.)7 = w;,
2
, b—a b+a
T = T

Ty Bt
with the points x; and the weight w; as defined above. In DRAGON the Gauss—Legendre points and weights for
arbitrary integration limits (x; and wg) can be obtained for values of /N ranging from 2 to 20 and for 24, 28, 32,
and 64 by calling the subroutine ALGPT.

C.2 Gauss—Jacobi quadrature

The integrations weights and points in the Gauss—Jacobi quadrature are selected in such a way that:

1 N
/0 xf(x)de = szf(xl)a
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is exact when f(z) is a polynomial of order 2 x N — 1 or lower. This can be ensured by selecting the x; for each

order N as the zero’s of the polynomials ¢y () which are defined in terms of the Jacobi polynomials P](Vk’o) (x) as
follows:

gn(z) = V2n+ 2PV (1 - 22)
Once the integration points have been computed, the associated weights can be obtained using:

—1
N-1

wi = { Y la;(@:)]?

=0

For the case where the lower and upper integration limits are 0 and b respectively one can use the following

transformation:
b N
| at@ie =Y uisa)
0 i=1
such that
w) =b*w;,
x, =bx;

with the points and weight defined as above. In DRAGON the Gauss—Jacobi points and weights for the reference
integration limits (x; and w;) can be obtained for values of NV ranging from 1 to 8 by calling the subroutine ALGJP.
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APPENDIX D
CONTENTS OF THE DRAGON BINARY TRACKING FILE

D.1 EXCELL Tracking File

The EXCELL tracking files are stored in a sequential binary format. They contain all the information re-
quired by the collision probability integrator to evaluate the collision probabilities associated with a geometry.
In DRAGON, such files are generated indirectly, that is, first, a temporary tracking file is created by one of the
DRAGON tracking options.["*! This temporary file is then processed by a track normalization routine which mod-
ifies the segment length associated with each region in such a way that the use of the normalized tracking file
for regional volume evaluation results in the analytical volumes. The final tracking file is then written using the
following FORTRAN instructions

WRITE(IUNIT) ’$TRK’,NCOMNT,NBTR
DO 100 ICOM=1,NCOMNT
WRITE (IUNIT) COMNT (ICOM)
100 CONTINUE
WRITE (IUNIT) NDIM,ISPEC,NREG,NSOUT,NALBG,NCOR,NANGL,MXSEG
WRITE(IUNIT) (VOLSUR(II),II=-NSOUT,NREG)
WRITE(IUNIT) (MATALB(II),II=-NSOUT,NREG)
WRITE (IUNIT) (ICODE(II),II=1,NALBG)
WRITE(IUNIT) (GALBED(II),II=1,NALBG)
WRITE(IUNIT) ((ANGLE(II,JJ),II=1,NDIM),JJ=1,NANGL)
WRITE(IUNIT) (DENSTY(JJ),JJ=1,NANGL)
DO 110 ILINE=1,NBTR
IF(NSEG .GT. 0) THEN
WRITE (IUNIT) IANGL,NSEG,WEIGHT,
> (NRSEG(II),II=1,NSEG),
> (SEGLEN(II),II=1,NSEG)]
ENDIF
110 CONTINUE

where

IUNIT FORTRAN unit associated with this file

$TRK Character*4 keyword to identify a tracking file

NCOMNT Number of comment records.

NBTR Total number of tracks records. In the initial pass generating the temporary tracking file, NBTRK=0.
It is reset to the exact number of tracks before being transferred to the final track file.

COMNT Character*80 comment line.

NDIM Dimension of problem (2 for 2-D geometry and 3 for 3-D geometry).

ISPEC Type of tracking. ITSPEC=0 for normal tracking and ISPEC=1 for specular tracking.

NREG Number of regions.

NSOUT Number of outer surfaces.

NALBG Number of geometric albedos.
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NCOR

NANGL

MXSEG

VOLSUR

MATALB

ICODE

GALBED

ANGLE

DENSTY

IANGL

NSEG

WEIGHT

NRSEG

SEGLEN

Number of initial and final surfaces that can be crossed by a track.
Number of track direction angles considered in the integration.
Maximum number of line segments per track.

Surface-volume vector.

Surface direction and region material identification vector.

Albedo number associated with a face. Negative values for ICODE refers to a geometric albedo
while positive values refers to a physical albedo.

Geometric albedos.

Tracking angle directions. For 2-D geometry they represent the cosine and sine of the tracking
angles respectively while for 3-D geometries, they represent the 3 director cosines associated
with the track direction.

Density associated with each tracking angle. For 2-D geometries, this is a linear density while
for 3-D geometries it is a surface track density.

Angle number for this track.
Number of segments for this track.
Integration weight factor associated with this track.

Surface (negative) and region (positive) numbers crossed by track. When ISPEC=0, the first and
the last elements of this vector are associated with the external surfaces, all the other elements
being associated with region numbers. When ISPEC=1, NRSEG starts and finishes with a surface
number. In addition the surface numbers will be mixed with the region numbers in the remaining
elements of the vector NRSEG.

Length of segment crossing a region. Elements of the vector SEGLEN associated with surfaces
are set to 1.0 for isotropic scattering and 0.5 for specular tracking.



