
The GAN Generalized Driver

Robert ROY∗ and Alain HÉBERT

Institut de génie nucléaire

École Polytechnique de Montréal

∗e-mail: roy@meca.polymtl.ca

March 2000

Abstract

This new version of the GAN generalized driver can be used to call a sequential series of modules

sharing a common calling convention. It provides a template to build FORTRAN scientific

applications by linking independent modules, each one performing an elementary task. Data

can only be exchanged between modules using files or linked lists, an abstract data type that

features a hierarchical structure. A linked list is an auto-descriptive information structure kept in

core memory and referenced using a single pointer. A complete set of standard utility modules is

provided to perform operations on the files and linked lists. Any application can be customized

by adding application-dependent and specific utility modules. Any application based on the

GAN generalized driver will share a common user interface and will behave in a standard manner.

IGE-158 The GAN Generalized Driver 1

Contents

1 Introduction 5

1.1 The GAN generalized driver: an overview . 5

1.2 CLE-2000 and the generalized driver . 7

1.2.1 CLE-2000 instructions . 8

1.2.2 Values and variables . 9

1.2.3 Interface between CLE-2000 and the kernel 10

2 The kernel syntax (user’s guide) 12

2.1 Syntactic rules for input data specifications . 12

2.2 Declaration modules . 13

2.2.1 The PROCEDURE declaration . 13

2.2.2 The MODULE declaration . 14

2.2.3 The LINKED LIST declaration . 15

2.2.4 The XSM FILE declaration . 15

2.2.5 The SEQ BINARY declaration . 16

2.2.6 The SEQ ASCII declaration . 16

2.2.7 The DIR ACCESS declaration . 17

2.2.8 The PARAMETER declaration . 18

2.3 Standard modules . 20

2.3.1 The EQU: module . 20

2.3.2 The UTL: module . 21

2.3.3 The DELETE: module . 24

2.3.4 The BACKUP: module . 24

2.3.5 The RECOVER: module . 25

2.3.6 The FREE: module . 25

2.3.7 The ADD: module . 26

2.3.8 The MPX: module . 26

2.3.9 The STAT: module . 27

2.3.10 The GREP: module . 27

2.3.11 The FIND0: module . 29

IGE-158 The GAN Generalized Driver 2

2.3.12 The IOX: module . 32

2.3.13 The END: module . 35

2.4 User’s directives . 36

3 The kernel drivers (programmer’s guide) 39

3.1 Developer’s basic directives . 39

3.2 Kernel’s tree . 43

3.3 The KERNEL function . 47

3.4 Input probing . 49

3.4.1 OBJPIL . 49

3.4.2 OBJSTK . 49

3.4.3 OBJXRF . 50

3.5 File management . 51

3.5.1 KDROPN . 51

3.5.2 KDRCLS . 52

3.5.3 KDRFST . 53

3.6 The LCM software . 55

3.6.1 LCMSET . 55

3.6.2 LCMCAR . 55

3.6.3 LCMOP . 56

3.6.4 LCMLEN . 57

3.6.5 LCMGET . 57

3.6.6 LCMPUT . 58

3.6.7 LCMSIX . 60

3.6.8 LCMNXT . 60

3.6.9 LCMIOF . 61

3.6.10 LCMPOF . 62

3.6.11 LCMDEL . 63

3.6.12 LCMLIB . 63

3.6.13 LCMADD . 63

3.6.14 LCMULT . 64

IGE-158 The GAN Generalized Driver 3

3.6.15 LCMEQU . 64

3.6.16 LCMSTA . 65

3.6.17 LCMEXP . 65

3.6.18 LCMVAL . 66

3.6.19 LCMCL . 66

3.7 Abort and exception handling . 67

3.7.1 XABORT . 67

3.8 Dynamic allocation of memory in Fortran-77 . 68

3.8.1 SETARA . 68

3.8.2 RLSARA . 68

3.8.3 Example of memory allocation in FORTRAN-77 69

4 CONCLUSION 71

Index 72

IGE-158 The GAN Generalized Driver 4

List of Figures

1 An example of a linked list. 5

2 The declaration modules. 13

3 Compilation process. 14

4 The standard modules. 20

IGE-158 The GAN Generalized Driver 5

1 Introduction

1.1 The GAN generalized driver: an overview

A scientific application can be build around the GAN generalized driver by linking it with

application-dependent modules.[1, 2] Such a scientific application will share the following spec-

ifications:

record1

record2

record3

directory1 record7

directory3

record8

record4

record5directory2

record6

Figure 1: An example of a linked list.

1. The advanced kernel can handle a custom data type, implemented as a linked list. Each

data type mapped to a hierarchical structure, is dynamically allocated using the computer’s

memory management algorithm and is accessed with a pointer. Linked lists are the only

memory-resident data type used to transfer information between modules (common blocks

and INCLUDE statements will no longer be used). An example of a linked list is shown in

Fig. 1. However, interface files can be used to transfer information between modules in

cases where we want to reduce the memory resource requirements. xsm files are available

to store any hierarchical structure similar to the example shown in Fig. 1.

2. Building a scientific application requires the definition of the linked lists and interface files

and the programming of application-dependent modules to manage these linked lists or

files.

IGE-158 The GAN Generalized Driver 6

3. The application-dependent and utility modules can be programmed in one of the following

languages:

• straight FORTRAN-77

• FORTRAN-77 with MIL-STD 1753 extensions (Cray-style pointers, structures and

records)

• FORTRAN-90

• C

• Ada

This new version of the advanced kernel was written in straight FORTRAN-77, but has

also been translated into FORTRAN-90, now that suitable compilers are available.

4. A kernel for the driver was written to support the linked lists and to read macro-language

instructions. The modules are callable from this driver, but the possibility of having

“embedded modules”, i.e. modules called directly from a subroutine written in any of

these four languages has also been introduced.

5. Utility modules are available to backup the linked lists on an xsm file and to permit code

restart.

With this new user interface, the input to a module named MOD: with two embedded modules

EMB1: and EMB2: will always be of the form:

(list of output linked lists) := MOD: (list of input linked lists) :: (data input for MOD:)

::: EMB1: (data input for EMB1:) ;

::: EMB2: (data input for EMB2:) ;

;

This approach will make it possible to perform complex simulations and the debugging of

modular parts of our codes will be easier. The modular calculation strategy will also ensure

that subsequent developments can be easily implemented in a fully-integrated computation en-

vironment. The concern that students can learn and be involved in developing codes in a more

IGE-158 The GAN Generalized Driver 7

user-friendly environment is also an important benefit. The kernel of the generalized driver is

closely connected to the CLE-2000 compiler that will now be described.

1.2 CLE-2000 and the generalized driver

The CLE-2000 control language allows loops, conditional testing and macro-processor capabil-

ities to be included in the generalized driver input deck. A reversed polish notation (RPN)

calculator named EVALUATE is also provided. An example of conditional testing is shown in the

following example involving two modules:

INTEGER INDEX ;

MODULE MOD1: MOD2: ;

.

.

.

EVALUATE INDEX := 0 ;

REPEAT

EVALUATE INDEX := INDEX 1 + ;

IF INDEX 3 > THEN

(output list) := MOD1: (input list) :: (data input for MOD1:) ;

ELSE

(output list) := MOD2: (input list) :: (data input for MOD2:) ;

ENDIF ;

UNTIL INDEX 7 >= ;

This type of programming provides the user with much more flexibility than the conventional

approaches. It is possible to build new applications without re-compilation, simply by changing

the order of the module calls and by making modifications to the conditional logic. It is very

simple to develop a user-defined function even if this possibility is not programmed into any

module.

IGE-158 The GAN Generalized Driver 8

The CLE-2000 control language brings the following capabilities to any code:

• INTEGER, REAL, STRING, DOUBLE and LOGICAL declarations to contain control language and

macro-processor variables. The language provides no direct data type conversion.

• macro processor variables. For example, it is possible to define a variable VAR1 as equal

to a real number and to use <<VAR1>> in place of this real number later on.

• reversed polish notation calculator. A calculator is called upon each time the statement

EVALUATE is used. For example, the statement

EVALUATE VAR1 := 4.0 6.0 + ;

would assign the result 10.0 to the variable VAR1. Logical operations are fully supported.

• a simple printer. For example, the variable VAR1 can be printed using the command

ECHO VAR1 ;

• three types of control loops. The available control loops are:

– IF (logical expression) THEN (user instructions) ELSE (user instructions) ENDIF ;

– REPEAT (user instructions) UNTIL (logical expression) ;

– WHILE (logical expression) DO (user instructions) ENDWHILE ;

Note that the EVALUATE and ECHO statements are not modules of the generalized driver.

1.2.1 CLE-2000 instructions

Users can code CLE-2000 instructions only in the 72 first character positions of any line of the

source file. All other entries (columns 73 and up) should no longer be used. Comments can

also be included in the source file; they usually begin with ! (exclamation). Except for the

comment lines, blanks are significant; they are used in order to separate variables, operations,

keywords,etc. All CLE-2000 instructions must end with a semicolon ; normally followed by

a carriage return. The simple fact that the semicolon may not end an instruction specific to

CLE-2000 is not important to the compiler. After each semicolon, the compiler will identify

IGE-158 The GAN Generalized Driver 9

which instructions have a CLE-2000 meaning, and other instructions are sent to the kernel.

The CLE-2000 compiler is responsible in producing a compiled file, where conditional logic is

manageable and where computations results in data of the correct type anywhere in the source

file. Links with the applications, as input/output access, and executions of the compiled file is

no longer its role.

1.2.2 Values and variables

Any value accepted by the CLE-2000 compiler has one of the following five types: logical, integer,

real, double or string. When analyzing a possible value, CLE-2000 determines its type according

to:

Integer any sequence of decimal numbers (unsigned integer);

Integer a sign + or − followed by any sequence of decimal numbers (signed

integer);

Real a sequence of decimal numbers with one decimal point;

Real a sequence of decimal numbers, preceded or not by a sign and with or

without a decimal point, with an E followed by a signed or unsigned

integer;

Double sequence of decimal numbers, preceded or not by a sign and with or

without a decimal point, with an D followed by a signed or unsigned

integer ;

String a sequence of characters enclosed between two quotation marks (charac-

ter ”) or two apostrophes (character ’) (or any sequence with no blank

that was not identified as a numeric value by the previous items) ;

Logical a type mostly restricted to CLE-2000 statements (with internal values

$True L or $False L).

There are value limits for these different types. The following restrictions are imposed on

the content of a string:

• the length of any string is restricted to 72 characters;

IGE-158 The GAN Generalized Driver 10

• a string must not contain an exclamation mark (character ! reserved for comments);

• a string must not contain double IO symbols (this excludes characters << or >> whose

functions will be described later);

• in CLE-2000 statements, strings must be enclosed between quotation marks (character ”);

• outside CLE-2000, strings are character sequences that were not identified as numeric

(with no blank) or character sequences between apostrophes (character ’).

These limits are imposed by the language in which the CLE-2000 compiler was written. For the

actual 2.1 version, Fortran was used and the usual limits for integers, real and double precision

data apply. Strings are restricted to 72 characters.

Variable names are restricted to 12 alphanumeric values. Once declared, these variable

identifiers are uniquely associated with a memory location in a direct access file. Every name

must begin with a letter or an underscore, the other values may be letters, digits or underscores.

A particular type of variable is a pre-defined constant (or parametric) which begins with a

$ sign (each application can have its own set of parametric constants). Once declared, these

variable identifiers are uniquely associated with a memory location in the direct access (object)

file. At any step in the CLE-2000 source file, the user may store a value in the variable using

an EVALUATE statement; moreover, the developer of an application can also store a value in

the variable using the syntax >>VAR1<<. He may also recall the value of a variable inside any

evaluation/calculation step.

1.2.3 Interface between CLE-2000 and the kernel

The interface between CLE-2000 and this kernel (or any application module) is done using

<< · >> or >> · << syntax. To access the content of a variable VAR IN , the access instruction

is:

Structure (inputmode)

<<VAR IN >>

IGE-158 The GAN Generalized Driver 11

When developing a new module that will fully use the CLE-2000 syntax, the developer can

also use the inverse access in order to put a value in a CLE-2000 variable. To put a value into

a variable VAR OUT , the inverse access instruction is:

Structure (outputmode)

>>VAR OUT <<

Note that this inverse access operation is done after checking if the type correctly matched

the one given by the user.[4]

IGE-158 The GAN Generalized Driver 12

2 The kernel syntax (user’s guide)

Using the generalized driver automatically gives the user access to a set of standard utility

modules. These modules perform general purpose actions on the linked lists and files. Some of

these modules are declaration modules, others only give information on data, and finally some

modules act on linked lists and/or files (either by changing or copying some data).

2.1 Syntactic rules for input data specifications

This user’s guide was written using the following conventions:

• the parameters surrounded by single square brackets ‘[]’ denote an optional input;

• the parameters surrounded by double square brackets ‘[[]]’ denote an optional input which

may be repeated as many times as desired;

• the parameters in braces separated by vertical bars ‘{ | | }’ denote a choice of input where

(one and only one is mandatory);

• the parameters in bold face and in brackets ‘()’ denote an input structure;

• the parameters in italics and in brackets with an index ‘(data(i), i=1,n)’ denote a set of n

inputs;

• the words using the typewriter font are character constants KEY WORDS used as key words;

• the words in italics are user-defined variables, they should be lower case and are of type

integer (starting with i to n) and floating point (starting with a to h or o to z) or of type

character in uppercase CHARACTER.

In order to simplify the presentation of generalized-driver statements, the semicolon will be

simply withdrawn from the description of each sentence.

IGE-158 The GAN Generalized Driver 13

2.2 Declaration modules

In the GAN generalized driver, there exists eight different types available. Object of these types

must be declared only once in a source file; they are static in the sense that, once defined, their

values will stay available anywhere in the source file. The declarations can be given anywhere in

the source file. It is important to note that an object must be declared before its first appearance

in an executable statement. There are two forms of declarations: the simple declaration of the

type and the declaration followed by some specifications on the objects.

�
 �	PROCEDURE�
 �	MODULE�
 �	LINKED LIST�
 �	XSM FILE�
 �	SEQ BINARY�
 �	SEQ ASCII�
 �	DIR ACCESS�
 �	PARAMETER

object names

object names
�
 �	:: declaration data

optional

Figure 2: The declaration modules.

For the current version, the full declaration form including some declaration data is available

for files declared by SEQ BINARY , SEQ ASCII and DIR ACCESS and in procedure parameters

using PARAMETER . The structure of all these types will now be described. Input to a sci-

entific application build around this GAN generalized driver must always follow the following

specifications.

2.2.1 The PROCEDURE declaration

The kernel of the generalized driver offers the possibility of user-defined procedures. These

procedures give the user the possibility to “program” an application using the full capabilities

of the generalized driver in a calling procedure. A procedure is a set of input data specifications

contained in a distinct ascii file and called from another input data file. If the command

PROCEDURE file has been issued by the user, three files with different extensions are involved

IGE-158 The GAN Generalized Driver 14

in the compilation process:

• file.c2m is the name of the ascii source file to be compiled;

• file.o2m is the name of the object file resulting from the compilation;

• file.l2m is the name of the output file used for comments and errors.

The name of the procedure must correspond with the name of the ascii file without extension.

If there exists no file named file.o2m in the execution directory, the compilation will proceed

from the ascii file file.c2m:

file.c2m - file.o2m

- file.l2m

Figure 3: Compilation process.

The input to this PROCEDURE declaration takes the form of the structure (procedure) :

Structure (procedure)

PROCEDURE [[NAME PR]]

NAME PR character*12 name of a procedure available in the execution directory.

Note that procedures must be declared before their first use.

Here is an example of a simple procedure declaration statement:

PROCEDURE FACT ;

2.2.2 The MODULE declaration

The MODULE declaration gives the names of modules that will be used later in the input source.

Every module in the input source must be declared before it is first used. The input to this

declaration module takes the form of the structure (module) :

Structure (module)

IGE-158 The GAN Generalized Driver 15

MODULE [[NAME MD]]

NAME MD character*12 name of a module available in the application. Note that

the embedded modules do not need to be declared.

Here is an example that gives the list of all executable modules available in this kernel:

MODULE ADD: BACKUP: DELETE: END: EQU: FIND0: FREE: GREP:

IOX: MPX: RECOVER: STAT: UTL: ;

2.2.3 The LINKED LIST declaration

The LINKED LIST declaration gives the names of linked lists that will be used later in the input

source. Every linked list in the input source must be declared before it is first used. The input

to this declaration module takes the form of the structure (linkedlist) :

Structure (linkedlist)

LINKED LIST [[NAME LL]]

NAME LL character*12 name of a linked list.

Here is an example of a simple linked list declaration statement:

LINKED_LIST LL ;

2.2.4 The XSM FILE declaration

The XSM FILE declaration gives the names of xsm files that will be used later in the input

source. Every xsm file in the input source must be declared before it is first used. The input to

this declaration module takes the form of the structure (xsmfile) :

Structure (xsmfile)

XSM FILE [[NAME XF]]

NAME XF character*12 name of a xsm file.

Here is an example of a simple xsm file declaration statement:

XSM_FILE XF ;

IGE-158 The GAN Generalized Driver 16

2.2.5 The SEQ BINARY declaration

The SEQ BINARY declaration gives the names of sequential binary files that will be used later in

the input source. Every sequential binary file in the input source must be declared before it is

first used. The input to this declaration module takes the form of the structure (seqbinary) :

Structure (seqbinary)

SEQ BINARY [[NAME SQ]]

[:: [EDIT impr]

FILE [[FILE SQ]]

]

NAME SB character*12 dummy name of a sequential binary file. Note that the

dummy name is the true name if the full data form is not used.

EDIT key word used to set the impr variable to 0 (no printing in the module)

or 1 (some printing is done in the module). The default value is impr

= 0.

FILE key word used before actual file names given in FILE SQ . There must

be the same number of file names than the number of sequential binary

dummy names. The actual file names are limited to character*72 data.

There are thus two forms for declaring sequential binary files: in the short form, the dummy

name is limited to 12 characters and is equal to the actual true file name; in the long form, the

dummy name is used to access a file which actual file name can have up to 72 characters. Here

is an example of a long declaration:

SEQ_BINARY MYLIB OUT ::

FILE ’/home/roy/libroy’ ’/home/roy/outbin’ ;

2.2.6 The SEQ ASCII declaration

The SEQ ASCII declaration gives the names of sequential ascii files that will be used later in

the input source. Every sequential ascii file in the input source must be declared before it is

first used. The input to this declaration module takes the form of the structure (seqascii) :

IGE-158 The GAN Generalized Driver 17

Structure (seqascii)

SEQ ASCII [[NAME SA]]

[:: [EDIT impr]

FILE [[FILE SA]]

]

NAME SA character*12 dummy name of a sequential ascii file. Note that the

dummy name is the true name if the full data form is not used.

EDIT key word used to set the impr variable to 0 (no printing in the module)

or 1 (some printing is done in the module). The default value is impr

= 0.

FILE key word used before actual file names given in FILE SA . There must

be the same number of file names than the number of sequential ascii

dummy names. The actual file names are limited to character*72 data.

Here is an example of a long-form declaration for two ascii files:

SEQ_ASCII IN OUT ::

FILE ’/home/roy/input’ ’/home/roy/output’ ;

2.2.7 The DIR ACCESS declaration

The DIR ACCESS declaration gives the names of direct access files that will be used later in the

input source. Every direct access file in the input source must be declared before it is first used

and the record length of each file must be given. The input to this declaration module takes the

form of the structure (diraccess) :

Structure (diraccess)

DIR ACCESS [[NAME DA]]

:: [EDIT impr] [FILE]

RECL [[[FILE DA] recl]]

NAME DA character*12 dummy name of a direct access file. Note that the dummy

name is the true name if the full data form is not used.

IGE-158 The GAN Generalized Driver 18

EDIT key word used to set the impr variable to 0 (no printing in the module)

or 1 (some printing is done in the module). The default value is impr

= 0.

FILE key word used before actual file names given in FILE DA . There must be

the same number of file names than the number of direct access dummy

names. The actual file names are limited to character*72 data.

RECL mandatory key word used to set the recl integers. There must be the

same number of recl than the number of names. The record lengths are

given in 32-bit words (that is usually in multiple of 4 bytes).

Here is an example of a long-form declaration for a 1024-byte direct access file:

DIR_ACCESS WIMSLIB ::

FILE RECL ’/home/roy/lib/WIMSLIB’ 256 ;

2.2.8 The PARAMETER declaration

The PARAMETER declaration gives the dummy names of parameters (linked lists or files) that

were passed by a calling program into a procedure and that will be used later in the input

procedure. The input to this declaration module takes the form of the structure (parameter) :

Structure (parameter)

PARAMETER [[NAMPRM]]

[:: [EDIT impr]

[::: LINKED LIST [[NAME LL]] ;]

[::: XSM FILE [[NAME XF]] ;]

[::: SEQ BINARY [[NAME SB]] ;]

[::: SEQ ASCII [[NAME SA]] ;]

[::: DIR ACCESS [[NAME DA]] ;]

]

NAMPRM character*12 dummy name of a parameter. Note that the parameter

inherits its declaration type from the calling program in the short form.

IGE-158 The GAN Generalized Driver 19

EDIT key word used to set the impr variable to 0 (no printing in the module)

or 1 (some printing is done in the module). The default value is impr

= 0.

LINKED LIST embedded module called to verify if actual arguments NAME LL passed

by the calling program are linked lists.

XSM FILE embedded module called to verify if actual arguments NAME XF passed

by the calling program are xsm files.

SEQ BINARY embedded module called to verify if actual arguments NAME SB passed

by the calling program are sequential binary files.

SEQ ASCII embedded module called to verify if actual arguments NAME SA passed

by the calling program are sequential ascii files.

DIR ACCESS embedded module called to verify if actual arguments NAME SA passed

by the calling program are direct access files.

In the long form, the parameter must satisfy the proper type when this input file procedure

is executed. Note that some parameters may inherit their types, at the same time as other

parameters are forced to satisfy some types. Here is an example where we used 6 linked lists

and 2 sequential binary files:

PARAMETER FLUX6 EDIT6 LIBRARY CANDU6F TRACK6F TRACK6S

TRCAN6F TRCAN6S ::

::: LINKED_LIST FLUX6 EDIT6 LIBRARY CANDU6F TRACK6F TRACK6S ;

::: SEQ_BINARY TRCAN6F TRCAN6S ;

;

It is important to note that there is a semicolon at the end of each embedded module, so

that the final sentence ends with two semicolons for the long form of declaration.

IGE-158 The GAN Generalized Driver 20

2.3 Standard modules

A complete set of standard utility modules is provided to perform usual operations on linked

lists or files. Applications will then be customized by adding application-dependent and specific

modules without caring about how to transmit data between linked lists or files. In Fig. 4, we

depict the list of the standard modules. Note that in some cases (modules EQU: and IOX:) it

is not necessary to use the name of the module.

�
 �	ADD:�
 �	BACKUP:�
 �	DELETE:�
 �	END:�
 �	[EQU:]�
 �	FIND0:�
 �	FREE:�
 �	GREP:�
 �	[IOX:]�
 �	MPX:�
 �	RECOVER:�
 �	STAT:�
 �	UTL:

obj out := obj in :: mod data

optional optional

Figure 4: The standard modules.

Some standard modules have only input objects (linked lists or files), others have output

objects. There are standard modules where users can input some data; others do not allow any

data input. We will now describe shortly each of these modules.

2.3.1 The EQU: module

This module is used to copy a linked list, an xsm file, a sequential binary file or a sequential

ascii file. The calling specifications for structure (equality) are:

IGE-158 The GAN Generalized Driver 21

Structure (equality)

NAME1 [[NAME2]] := [EQU:] NAME3 [:: EDIT impx]

NAME1 character*12 name of a linked list, an xsm file, a sequential binary file

or a sequential ascii file.

NAME2 character*12 name of a linked list, an xsm file, a sequential binary file

or a sequential ascii file. Optional data.

NAME3 character*12 name of a linked list, an xsm file, a sequential binary file

or a sequential ascii file.

EDIT key word used to set the impx variable to 0 (no printing in the module)

or 1 (some printing is done in the module). The default value is impx

= 1.

The name of this module does not have to be formally given. The kernel is able to detect

whenever there is a sentence with linked lists or file names but no module and thus to associate

this operation to equality. The LHS is (are) created. If both the RHS and LHS are linked lists

or xsm files, a single copy is performed. A linked list can be created from an xsm file or an xsm

file can be created from a linked list. If the LHS is a sequential file and the RHS is a linked list

or an xsm file, an export is performed. The export format is either binary or ascii, depending

on the type of the LHS file. If the LHS is a linked list or an xsm file and the RHS is a sequential

file, an import is performed. The case where both the LHS and the RHS are sequential files is

not supported.

2.3.2 The UTL: module

The UTL: module is used to perform utility actions on a single linked list or a single xsm file.

NAME1 is either created, modified or read, depending on where it appears on each side of UTL:

. The calling specifications for structure (util) are:

Structure (util)

IGE-158 The GAN Generalized Driver 22

[NAME :=] UTL: [NAME] ::

[[DIR]] [[STEP { UP NOMDIR | DOWN }]]

[[IMPR BLOCK { ileni | * }]]

[[CREA BLOCK ilenc = { (valc (i),i=1,ilenc) | (ivalc (i),i=1,ilenc) | (hvalc (i),i=1,ilenc

)

| (dvalc (i),i=1,ilenc) }]]

[[MULT BLOCK flott]]

[[{ COPY | STAT { REL | ABS } | ADD } NOMREF NOMALT]]

[DUMP]

NAME1 character*12 name of a linked list or an xsm file that will be treated

by the utility module.

DIR key word used to print the active directory content.

STEP key word used to move into the xsm hierarchy.

UP key word used to move up towards a sub-directory of the active directory.

NOMDIR name of the sub-directory to which we wish to head.

DOWN key word, allows descent towards the sub-directory containing the active

directory.

IMPR key word, used to evaluate the number of non zero elements in a block lo-

cated on NAME1 and to print it in whole or in part. The only accessible

blocks are those found on the active directory of NAME1 .

MULT key word, allows each element of a block or sub-directory in the active

directory to be MULTiplied by a real constant. If BLOCK is a sub-

directory, only floating point information contained in it is multiplied.

CREA key word used to CREAte a block of information on NAME1 . This

block will be created in the active directory.

BLOCK name of the block or sub-directory chosen.

ileni maximum number of elements that the user wishes to print. A value of

ileni =0 is permitted.

IGE-158 The GAN Generalized Driver 23

* key word, indicates that all the elements of a block will be printed. In

a realistic case, the number of elements contained in a block may be

rather large; this option must therefore be used with caution.

ilenc number of elements which the newly created block will contain.

= key word, indicates that the input values will follow.

valc real vector containing the information to be written to NAME1 .

ivalc integer vector containing the information to be written to NAME1 .

hvalc character*4 array containing the information to be written to NAME1 .

dvalc double precision array containing the information to be written to NAME1

.

flott constant by which a block or sub-directory present on NAME1 will be

multiplied.

COPY key word used to copy an existing block (or sub-directory) administered

by xsm onto a new block (or sub-directory) existing or not. If it does

not exist, it will be created automatically.

ADD key word used to add the contents of two blocks or two sub-directories

on NAME1 . If NOMREF and NOMALT are sub-directories, only the

floating point information contained in them is added. The result is

written in NOMALT .

STAT key word used to compare the contents of two blocks on NAME1 .

REL the relative differences are printed. Neither of the two blocks is modified.

ABS the absolute differences are printed. Neither of the two blocks is modi-

fied.

NOMREF name of the reference block.

NOMALT name of the block which may possibly be modified during the ADD and

COPY operations.

DUMP Dump the active directory of NAME1 and its sub-directories to the

printer. For example, a linked list (or xsm file) named OBJ10 can be

dumped to the printer using the following command:

IGE-158 The GAN Generalized Driver 24

UTL: OBJ10 :: DUMP ;

2.3.3 The DELETE: module

This module is used to delete one or many linked lists, xsm files, sequential or direct access files.

The calling specifications for structure (delete) are:

Structure (delete)

NAME1 [[NAME2]] := DELETE: NAME1 [[NAME2]]

NAME1 character*12 name of a linked list, an xsm file, a sequential binary file,

a sequential ascii file or a direct access file.

NAME2 character*12 name of a linked list, an xsm file, a sequential binary file,

a sequential ascii file or a direct access file. Optional data.

The names of the linked lists and files should be written on both the LHS and the RHS.

Only linked lists and files that do not break any dependency rule can be deleted.

2.3.4 The BACKUP: module

This module is used to copy one or many linked lists (or xsm files) together with its (their)

dependencies to a backup media. The backup media can be a single linked list, xsm file,

sequential binary file or sequential ascii file. The calling specifications for structure (backup)

are:

Structure (backup)

NAME1 := BACKUP: [NAME1] [[NAME2]] [:: EDIT impx]

NAME1 character*12 name of a linked list, an xsm file, a sequential binary file

or a sequential ascii file. NAME1 is used as a backup media.

NAME2 character*12 name of a linked list or an xsm file that is to be backup-

ed.

EDIT key word used to set the impx variable to 0 (no printing in the module)

or 1 (some printing is done in the module). The default value is impx

= 1.

IGE-158 The GAN Generalized Driver 25

If NAME1 appears only on the LHS, it is created. If NAME1 appears on both the LHS and

the RHS, it is updated.

2.3.5 The RECOVER: module

This module is used to recover one or many linked lists (or xsm files) previously saved on a

backup media. The backup media can be a single linked list, xsm file, sequential binary file or

sequential ascii file. The calling specifications for structure (recover) are:

Structure (recover)

[[NAME1]] := RECOVER: NAME2 [[NAME1]] [:: EDIT impx]

NAME1 character*12 name of a linked list or an xsm file that is to be recovered.

NAME2 character*12 name of a linked list, an xsm file, a sequential binary file

or a sequential ascii file. NAME2 is used as a backup media.

EDIT key word used to set the impx variable to 0 (no printing in the module)

or 1 (some printing is done in the module). The default value is impx

= 1.

If NAME1 appears only on the LHS, it is created. If NAME1 appears on both the LHS and

the RHS, it is replaced by the information located on the backup media.

2.3.6 The FREE: module

This module was originally defined and used to free one or many linked lists or files from their

dependencies with their daughters. The calling specifications for structure (free) are:

Structure (free)

[[NAME1]] := FREE: [[NAME1]]

NAME1 character*12 name of a linked list or a file that we want to free from

its dependencies. Each name should appear on both the LHS and the

RHS.

IGE-158 The GAN Generalized Driver 26

In this new version of the generalized driver, the dependencies are no longer support. How-

ever, to insure that old source files can run, the FREE: module was kept and it now does

absolutely nothing.

2.3.7 The ADD: module

This module is used to add the floating point information contained in two linked lists or xsm

files located on the RHS. The result is stored in NAME1 . The calling specifications for structure

(addition) are:

Structure (addition)

NAME1 := ADD: { NAME1 NAME2 | NAME2 NAME3 }

NAME1 character*12 name of a linked list or an xsm file that will contain the

result of the addition.

NAME2 character*12 name of a linked list or an xsm file that is not modified.

NAME3 character*12 name of a linked list or an xsm file that is not modified.

2.3.8 The MPX: module

This module is used to multiply the floating point information contained in a linked list or an

xsm files located on the RHS by a user-defined real number. The result is stored in NAME1 .

The calling specifications for structure (multiply) are:

Structure (multiply)

NAME1 := MPX: { NAME1 | NAME2 } :: real

NAME1 character*12 name of a linked list or an xsm file that will contain the

result of the multiplication.

NAME2 character*12 name of a linked list or an xsm file that is not modified.

real real number used to multiply the linked list or the xsm file.

IGE-158 The GAN Generalized Driver 27

2.3.9 The STAT: module

This module is used to compare the floating point information contained in two linked lists or

xsm files named NAME1 and NAME2 . The calling specifications for structure (statistics) are:

Structure (statistics)

STAT: NAME1 NAME2

NAME1 character*12 name of a the first linked list or xsm file.

NAME2 character*12 name of a the second linked list or xsm file.

2.3.10 The GREP: module

The GREP: module is used to extract a single value from a linked list or xsm file. The calling

specifications for structure (grep) are:

Structure (grep)

GREP: NAME ::

[[STEP { UP NOMDIR | DOWN }]]

[[{ GETVAL | MAXVAL | MINVAL | INDMAX | INDMIN | MEAN }

BLOCK index1 [{ { index2 | * } [index3] | NVAL { nval | * } }]

[[>>VAR IN <<]]]]

NAME character*12 name of a linked list or an xsm file from which an ex-

traction will be performed.

STEP key word used to move into the xsm hierarchy.

UP key word used to move up towards a sub-directory of the active directory.

NOMDIR name of the sub-directory to which we wish to head.

DOWN key word, allows descent towards the sub-directory containing the active

directory.

GETVAL key word used to get values from an existing block of a linked list or

an xsm file. The receiving CLE-2000 variables are assumed to be of the

same type as the picked values (all CLE-2000 types are supported).

IGE-158 The GAN Generalized Driver 28

MAXVAL key word used to get the maximum value from a list of values for an

existing block of a linked list or an xsm file. The receiving CLE-2000

single variable is assumed to be of the same type as the picked maximum

(valid for integer, real and double precision types).

MINVAL key word used to get the minimum value from a list of values for an

existing block of a linked list or an xsm file. The receiving CLE-2000

single variable is assumed to be of the same type as the picked minimum

(valid for integer, real and double precision types).

INDMAX key word used to get the index (position inside the block) of the maxi-

mum value from a list of values for an existing block of a linked list or

an xsm file. The receiving CLE-2000 single variable is assumed of an

integer type (valid for integer, real and double precision blocks).

INDMIN key word used to get the index (position inside the block) of the mini-

mum value from a list of values for an existing block of a linked list or

an xsm file. The receiving CLE-2000 single variable is assumed of an

integer type (valid for integer, real and double precision blocks).

MEAN key word used to get the mean value from a list of values for an existing

block of a linked list or an xsm file. The receiving CLE-2000 single

variable is assumed to be of the same type as the computed mean (valid

only for real and double precision types).

BLOCK name of the block chosen in which the extraction will be made.

index1 the first element to be extracted is the index1 -th element of BLOCK .

index2 if index2 is given, the last element to be extracted will be the index2

-th element of BLOCK ; if the extracted value is of character type,

the index1 -th to index2 -th elements of BLOCK will be extracted and

concatenated in a single character variable (of maximum length of 72).

Default value: 1.

* if * is given, the last element to be extracted is effectively the last

element in BLOCK .

index3 if index3 is given, it will specify the step between values to be extracted

IGE-158 The GAN Generalized Driver 29

between index1 and index2 . Default value: 1.

NVAL key word used to specify the number of elements to be extracted from

the block

nval this value is the number of elements to be extracted from the block; if

the extracted value is of character type, the index1 -th to index1 +nval

-1-th elements of the block are extracted.

VAR IN character*12 CLE-2000 variable name in which the extracted value will

be placed. It is expected that the number of values extracted and the

number (and types) of variables agree with the extraction instruction.

2.3.11 The FIND0: module

The FIND0: module is used to find the root of a function using the Brent’s method. This

procedure assumes that the zero is bracketed in an interval given as input using the two first

points, and that the function used is continuous in this interval. The calling specifications for

structure (findzero) are:

Structure (findzero)

NAME := FIND0: [NAME] ::

{ [DEBUG] [ITMAX itmax] [TOL tol] POINT X x1 Y y1 POINT X x2 Y y2 | Y y3 }

>>CONV L << >>NEWZERO R <<

NAME character*12 name of a linked list or an xsm file (type L 0) that

will contain all information necessary for the zero-finding procedure.

If NAME appears on both sides, it is updated; otherwise, it is created.

DEBUG key word used to edit the content of most variables in the L 0 object;

used only for debugging purposes.

ITMAX key word used to specify the maximum number of iterations that will

be allowed for the zero-finding procedure. The procedure will abort if

the number of iterations goes beyond this maximum value.

itmax the maximum number of iterations. Default value: 100.

TOL key word used to specify the tolerance on the zero to be found.

IGE-158 The GAN Generalized Driver 30

tol tolerance. Default value: 1.E-5.

POINT key word used to specify that the next point will be given.

X key word used to specify that an abscissa will be given.

Y key word used to specify that an ordinate will be given.

x1 the first abscissa value.

y1 the first ordinate value.

x2 the second abscissa value.

y2 the second ordinate value.

y3 in the case we are in an update mode, only a new ordinate value is given.

CONV L character*12 name of a CLE-2000 variable. The CONV L parameter

is expected to be a CLE-2000 logical variable, that will contain the

convergence mode (true if the zero-finding procedure has converged, false

otherwise. In creation mode, this value will normally be set to false.

NEWZERO R character*12 name of a CLE-2000 variable. The NEWZERO R pa-

rameter is expected to be a CLE-2000 real variable, that will contain

the next value (to approximate zero) to be used as in the zero-finding

procedure. In creation mode, this value will be computed using the two

points given as input; when it is modified, the procedure checks if it re-

ceives the last given value. It is important to used this particular value

for the next function evaluation.

Note that the zero-finding procedure has an initial mode where NAME is created. In the

initialization process, the two points specifying the interval must be given, and it is expected

that y1 ×y2 < 0. In the updated mode, there is no need to put back the abscissa of the next

point because it is expected to be the last real value that was generated by the procedure. This

explains why you will only input Y y3 .

The L 0 specification is used to store intermediate values needed by the zero-finding proce-

dure FIND0: . There are no directories in this object, and it is created and updated only by

the FIND0: module. To understand the content of the object, it is possible, using the labels

IGE-158 The GAN Generalized Driver 31

given for every block, to refer to Brent’s algorithm as given in Ref. [3]. Here is a description of

the content for the basic directory of the linked-list produced by this module:

Directory name: ’/ ’

begin records description

’SIGNATURE ’ Character*12 signature of the linked list or xsm file. Always equal to

’L 0’.

’X ’ Abscissae for 3 points. Dimension: 3 (values labelled a, b, c).

’Y ’ Ordinates for 3 points. Dimension: 3 (values labelled f(a), f(b), f(c)).

’DE ’ Intermediate real values. Dimension: 2 (labelled d, e).

’PQRS ’ Intermediate real values. Dimension: 4 (labelled p, q, r, s).

’ITERV ’ Integer vector containing iteration driving data. Dimension: 4 (values

labelled iter, itmax, iprt). iter is the iteration number, itmax is the

maximum number of iterations allowed and iprt is set to 1 in debugging

mode, 0 otherwise.

’TOL ’ Real vector containing tolerance data. Dimension: 3 (values labelled

tol, xm, tol1). tol is the tolerance permitted on the zero, xm, tol1 are

intermediate values related to tolerance.

end records description

The following example shows how to use this method to find a zero:

* CLE-2000 VERS 2.1 * R.ROY, EPM COPYRIGHT 1999 * LINE

* 0001

*--- 0002

* 0003

* FIND THE ROOT SOLUTION OF " X= EXP(-X) ". 0004

* 0005

*--- 0006

* 0007

LINKED_LIST L0 ; 0008

MODULE FIND0: END: ; 0009

REAL Y1 Y2 ROOT YNEW ; 0010

REAL X1 := 0.0 ; 0011

REAL X2 := 1.0 ; 0012

IGE-158 The GAN Generalized Driver 32

LOGICAL CONV ; 0013

* 0014

EVALUATE Y1 := X1 CHS EXP X1 - ; 0015

EVALUATE Y2 := X2 CHS EXP X2 - ; 0016

L0 := FIND0: :: ITMAX 20 TOL 1.0E-4 0017

POINT X <<X1>> Y <<Y1>> 0018

POINT X <<X2>> Y <<Y2>> 0019

>>CONV<< >>ROOT<< ; 0020

REPEAT 0021

EVALUATE YNEW := ROOT CHS EXP ROOT - ; 0022

L0 := FIND0: L0 :: Y <<YNEW>> 0023

>>CONV<< >>ROOT<< ; 0024

UNTIL CONV ; 0025

ECHO "Zero is =" ROOT ; 0026

QUIT . 0027

>|Zero is = 5.670696E-01 |>0026

.--.

At line number 15 and 16, we evaluate two values of the function f(x) = e−x − x which are

such that f(x1)× f(x2) < 0. This is sent to the creation step defined defined at lines 17-20. An

approximation of the root r is found. A sequence of calculations is now done: at every step, the

new value of f is computed using the best root yet available, and this is followed by a new call

to the FIND0: module to update root values.

2.3.12 The IOX: module

The IOX: module is used to recover input parameters (macro-processor variables) from the

calling statement and to return values to the calling program. This module can only be used in

a procedure. The calling specifications for structure (ioexternal) are:

Structure (ioexternal)

[IOX:] :: [[{ >>VAR IN << | VAL OUT }]]

VAR IN character*12 name of a CLE-2000 declared variable. The next value

in the input stack of the calling program is copied in the variable; types

in the calling program and for this variable are expected to match.

VAL OUT Any value acceptable in the CLE-2000 syntax can be returned to the

calling program. Once more, the type of the recipient is supposed to

match with this value.

IGE-158 The GAN Generalized Driver 33

Note that the module name itself does not have to be given. If a sentence contains data,

without any linked list or file name, the kernel will associate the default module IOX: . This

default value is the best way to use this module without having to declare it.
In order to show the IO transfers between the calling program and procedures, we will take

a simple example where we want to compute 8! Suppose that the main input file contains:

*

* Calling the recursive "FACT" procedure:

*

* input to "FACT": *n*

* output from "FACT": *n_fact*

*

* use to compute n!

*

PROCEDURE FACT ;

INTEGER n := 8 ;

INTEGER n_fact ;

*

* call with IO values.

FACT :: <<n>> >>n_fact<< ;

ECHO "FACT(" n ")=" n_fact ;

QUIT .

Once executed, this input file will generate an output where we will find an echo of the lines.
This output should look like this:

* CLE-2000 VERS 2.1 * R.ROY, EPM COPYRIGHT 1999 * LINE

* 0001

* Calling the recursive "FACT" procedure: 0002

* 0003

* input to "FACT": *n* 0004

* output from "FACT": *n_fact* 0005

* 0006

* use to compute n! 0007

* 0008

PROCEDURE FACT ; 0009

INTEGER n := 8 ; 0010

INTEGER n_fact ; 0011

* 0012

* call with IO values. 0013

FACT :: <<n>> >>n_fact<< ; 0014

ECHO "FACT(" n ")=" n_fact ; 0015

QUIT . 0016

On line number 13, this main input calls the procedure FACT; the first data is a value that
will be passed to the procedure, the second value is an output value that will be recovered from
the procedure. In this procedure (supposed to be a file called FACT.c2m), the access to the IO
stack can be done by:

!

! Example of a recursive procedure.

!

! input to "FACT": *n*

! output from "FACT": *n_fact*

!

INTEGER n n_fact prev_fact ;

!

! *n* is recovered from the calling program

:: >>n<< ;

!

IF n 1 = THEN

IGE-158 The GAN Generalized Driver 34

EVALUATE n_fact := 1 ;

ELSE

PROCEDURE FACT ;

EVALUATE n := n 1 - ;

!

! Here, "FACT" calls itself

FACT :: <<n>> >>prev_fact<< ;

EVALUATE n_fact := n 1 + prev_fact * ;

ENDIF ;

!

! *n_fact* is returned to the calling program

:: <<n_fact>> ;

!

QUIT .

whose output (once compiled) should look as:

* CLE-2000 VERS 2.1 * R.ROY, EPM COPYRIGHT 1999 * LINE

! 0001

! Example of a recursive procedure. 0002

! 0003

! input to "FACT": *n* 0004

! output from "FACT": *n_fact* 0005

! 0006

INTEGER n n_fact prev_fact ; 0007

! 0008

! *n* is recovered from the calling program 0009

:: >>n<< ; 0010

! 0011

IF n 1 = THEN 0012

EVALUATE n_fact := 1 ; 0013

ELSE 0014

PROCEDURE FACT ; 0015

EVALUATE n := n 1 - ; 0016

! 0017

! Here, "FACT" calls itself 0018

FACT :: <<n>> >>prev_fact<< ; 0019

EVALUATE n_fact := n 1 + prev_fact * ; 0020

ENDIF ; 0021

! 0022

! *n_fact* is returned to the calling program 0023

:: <<n_fact>> ; 0024

! 0025

QUIT . 0026

In line number 10, we recover the value sent by the main program. In line number 24, we

return the computed value to the main program.

Note that the number (and all types) of arguments must be the same in the calling program

and at the end of the procedure. However, the arguments can be recovered (and returned) in

batches. Arguments are processed from left to right according to their status (I/O) in the main

program. It is a good habit to keep input values, before output values. Be aware that expected

output values no longer exist in the main program until they are sent back at the end of the

procedure call. This is more or less similar to any other high-level programming language.

IGE-158 The GAN Generalized Driver 35

2.3.13 The END: module

This module is used to delete all the local linked lists, to close all the remaining local files and

to return from a procedure or to stop the run. The calling specifications for structure (end)

are:

Structure (end)

END:

IGE-158 The GAN Generalized Driver 36

2.4 User’s directives

The following user’s directives are always followed by an application built around the generalized

driver:

• A linked list is resident in core memory if declared as LINKED LIST in the input data or

mapped in a direct access file (of xsm type) if declared as XSM FILE in the input data.

• All the information declared as LINKED LIST is destroyed at the end of a run. All other

information is located on files which are kept at the end of the run, unless explicitly

destroyed by a DELETE: command.

• Consider the following example in which the module MOD1: is called with the following

command:

DATA1 DATA2 := MOD1: DATA2 DATA3 ;

Linked lists or files on which DATA2 and DATA3 exhibit a dependency are also available in

read-only mode to the module MOD1:.

• In the previous example, DATA1 is opened in create mode because it appears only on the

left-hand side (LHS) of the command. DATA2 is opened in modification mode because

it appears on both sides of the command. Finally, DATA3 is opened in read-only mode

because it appears only on the right-hand side (RHS) of the command.

• This example produces a first dependency of DATA1 on DATA2 and DATA3 and a second

dependency of DATA2 on DATA3. In older versions of the driver, the modification of DATA3

was prohibited as long as DATA1 and DATA2 were not deleted. Any modification to DATA2

was also prohibited as long as DATA1 is not deleted. In these cases, the generalized driver

was aborting with a message of the form:

DRVDEP: THE MODIFICATION OF DATA3 BREAKS A PREVIOUS DEPENDENCY RULE.

However, a copy of DATA3 can be performed by the command

DATA4 := DATA3 ;

IGE-158 The GAN Generalized Driver 37

and DATA4 can be modified without restriction. Another possibility was to free DATA3 from

its dependencies by the command

DATA3 := FREE: DATA3 ;

In this new version, these dependency rules are no longer imposed. The main reason

for this upgrade is that most loops and procedures (where object names do not usually

change) include a large number of free commands that did not contribute to calculations.

Moreover, some users were freeing every object after every module, making the syntax

ridiculous.

• A linked list opened in create or modification mode is closed with its active directory

recorded. This means that it will re-open on the directory which was active at the previous

close.

A linked list open in read-only mode is automatically closed on the directory active at

the time of the open. This means that a linked list opened in read-only mode is left

unchanged regardless of the operation performed on it.

• The calling sentence to a module should always end by a “;”. A comment can follow on the

same input data record but a carriage return should be performed before other significant

data can be read by REDGET.

The possibility of user-defined procedures is also being offered. These procedures give the

user the possibility to “program” an application using the capabilities of the generalized driver

and to use it as a new module in the main data stream or in a calling procedure. A procedure is

a set of input data specifications contained in a distinct ascii file and called from another input

data file. The name of the procedure should be the same as the name of the ascii file. A pro-

cedure usually begins with the PARAMETER statement to define the interface between the calling

and the called procedure. The correspondence of linked list or interface file parameters follows

the rules previously described in the PARAMETER declaration section. For example, consider a

procedure call of the form:

PROCEDURE PROC ;

IGE-158 The GAN Generalized Driver 38

SEQ_ASCII OBJ1 ;

LINKED_LIST OBJ2 OBJ3 OBJ4 ;

...

OBJ1 OBJ2 := PROC OBJ2 OBJ3 OBJ4 ;

The procedure PROC is in fact a file named PROC.c2m and it could begin by a PARAMETER

declaration of the short form:

PARAMETER XXX1 XXX2 XXX3 XXX4 ;

where XXX1, XXX2, XXX3 and XXX4 will be associated with OBJ1, OBJ2, OBJ3 and OBJ4 respectively.

Using the long form, the user could also impose the type of objects he expects from the calling

program:

PARAMETER XXX1 XXX2 XXX3 XXX4 ::

::: LINKED_LIST XXX2 XXX3 XXX4 ;

::: SEQ_ASCII XXX1 ;

;

However, in this case, there must be a perfect match between types in order that the procedure

can be executed.

IGE-158 The GAN Generalized Driver 39

3 The kernel drivers (programmer’s guide)

A scientific application based on the GAN generalized driver is built by linking application-

dependent modules to standard subroutines found in the GANLIB library. An application-

dependent module recovers information from and stores information into the linked list using a

tool-box of subroutines also found in the GANLIB library.

3.1 Developer’s basic directives

The developer of any scientific application built around the GAN generalized driver should

provide a main program of the following form (here given in Fortran-77):

PROGRAM GANTST

IMPLICIT NONE

INTEGER NMODXT, MAXENT

PARAMETER (NMODXT=1, MAXENT=64)

CHARACTER*12 CMODXT(NMODXT),HENTRY(MAXENT)

INTEGER IENTRY(MAXENT),JENTRY(MAXENT),KENTRY(MAXENT)

*

* LOCAL STORAGE

INTEGER IMODUL,NENTRY,ILEVEL,IPRINT

*

* GAN-2000 PARAMETERS

INTEGER CLECST

EXTERNAL CLECST

INTEGER KERNEL

*

* BLANK COMMON FOR DYNAMIC ALLOCATION IN F-77

INTEGER IBASE(1)

REAL RBASE

COMMON RBASE(1)

EQUIVALENCE (RBASE(1),IBASE(1))

*

DATA CMODXT / ’MYTEST: ’ /

*

ILEVEL= 0

IPRINT= 0

10 CONTINUE

IMODUL= KERNEL(CMODXT,NMODXT,ILEVEL,MAXENT,

1 CLECST,IPRINT,

2 NENTRY,HENTRY,IENTRY,JENTRY,KENTRY)

*

* IS THE RUN FINISHED ?

IF(ILEVEL.EQ.0) GO TO 666

*

* NO -> CALL THE APPROPRIATE CODE MODULE

IF(IMODUL.EQ. 1)THEN

CALL MYTEST(NENTRY,HENTRY,IENTRY,JENTRY,KENTRY)

ELSE

WRITE(6,*) ’KERNEL ERROR CODE=’,IMODUL

CALL XABORT(’GANTST: KERNEL ERROR’)

ENDIF

GO TO 10

666 STOP

END

IGE-158 The GAN Generalized Driver 40

Here made of only one custom module named MYTEST:, this application would require a

custom MYTEST subroutine defined by the developer to allow the linking with the generalized

driver. If next calling statement makes sense, the kernel will send the module number on return;

otherwise, the kernel sends an error code after some (generally unpleasant) output on errors.

The form of every module is invariant:

SUBROUTINE MYTEST(NENTRY,HENTRY,IENTRY,JENTRY,KENTRY)

*

*---

*

* MYTEST MODULE. CALLED FROM THE MAIN PROGRAM.

*

* INPUT/OUTPUT PARAMETERS:

* NENTRY : NUMBER OF LINKED LISTS AND FILES USED BY THE MODULE.

* HENTRY : CHARACTER*12 NAME OF EACH LINKED LIST OR FILE.

* IENTRY : =1 LINKED LIST;

* =2 XSM FILE;

* =3 SEQUENTIAL BINARY FILE;

* =4 SEQUENTIAL ASCII FILE;

* =5 DIRECT ACCESS FILE.

* JENTRY : =0 THE LINKED LIST OR FILE IS CREATED.

* =1 THE LINKED LIST OR FILE IS OPEN FOR MODIFICATIONS;

* =2 THE LINKED LIST OR FILE IS OPEN IN READ-ONLY MODE.

* KENTRY : FILE UNIT NUMBER OR LINKED LIST ADDRESS.

* DIMENSION HENTRY(NENTRY),IENTRY(NENTRY),JENTRY(NENTRY),

* KENTRY(NENTRY)

*

*-------------------------------------- AUTHOR: R. ROY --- 23/03/00 ----

*

IMPLICIT NONE

INTEGER NENTRY

CHARACTER HENTRY(*)*12

INTEGER IENTRY(*),JENTRY(*),KENTRY(*)

*

* MODULE IS ALLOWED TO DO THINGS ON ENTRIES WITH JENTRY(.) <= 1

...

RETURN

END

Note that the module names are given in a list of available modules so that the compiler

knows if the module is available or not. The module names do not have to be exactly the same

as the module names, this is just a standard habit. Finally, at least one subroutine is provided

for each module and the load module of the scientific application is linked using the operating

system link edit. Note that the calling parameters of each module are similar. NENTRY is a single

integer number whereas the other four are vectors of dimension NENTRY. They are defined in the

following way:

NENTRY : Number of linked lists or files used by the module.

HENTRY : character*12 name of each linked list or file.

IGE-158 The GAN Generalized Driver 41

IENTRY : Type of data structure:

=1 linked list;

=2 xsm file;

=3 sequential binary file;

=4 sequential ascii file;

=5 direct access file.

JENTRY : Mode for the data structure:

=0 the linked list or file is created in the module;

=1 the linked list or file is opened for modifications in the module;

=2 the linked list or file is opened in read-only mode.

KENTRY : File unit number or linked list address.

The following developer’s directives are always followed by an application built around the

generalized driver:

• All the linked lists or files used to interface an application-dependent module are created,

opened, closed and/or destroyed by the generalized driver.

• The programmer should not try to modify any entry opened in read-only mode by the

generalized driver.

• The programmer should not try to open or close any entry used or managed by the

generalized driver.

• The use of some subroutines of the GANLIB-2 library should be avoided in applications

builded around the generalized driver. For example, we do not recommend the use of

subroutines XSM , LCMOP and LCMCL.

• The programmer should not never use the STOP statement. A call to the XABORT subroutine

of the GANLIB-2 library should be used to stop the execution of a module.

• The programmer should not use any common block or any INCLUDE statement in its

application-dependent modules, with the exception of the blank common COMMON BASE(1)

used to locate the dynamically allocated memory in FORTRAN-77.

IGE-158 The GAN Generalized Driver 42

• All the input data required by a module should be read by the free format input reader

REDGET. The module should read all the data up to (and including) the “;” character. All

output data for CLE-2000 variables should be written using REDPUT.

• A pointer to the information declared as LINKED LIST and XSM FILE or a unit file number

to the information declared as SEQ BINARY, SEQ ASCII and DIR ACCESS is transmitted in

the KENTRY(I) vector. The value of I depends on the position of the driver’s variables

when the call to the module is performed. For example, calling a module MOD1: with the

following command:

DATA1 DATA2 := MOD1: DATA2 DATA3 ;

will associate index I=1 with DATA1, index I=2 with DATA2 and index I=3 with DATA3.

IGE-158 The GAN Generalized Driver 43

3.2 Kernel’s tree

The basic access for any main program using the GANLIB is called KERNEL. From this kernel,

the tree of routine calls is given in the following list:

kernel

| lcmset

| kdropn

| clepil

| | clelog

| | clestk

| | clexrf

| objpil

| | objstk

| | objxrf

| lcmop

| redopn

| lcmsix

| lcmget

| lcmcar

| lcmcl

| kdrcls

| redget

| lcmput

| redcls

| drviox

| | redget

| | lcmput

| | redcls

| | lcmsix

| | lcmcar

| | xabort

| | lcmget

| | redput

| | redopn

| drvequ

| | redget

| | xabort

| | kdropn

| | lcmexp

| | kdrcls

| drvutl

| | xabort

| | lcmnxt

| | redget

| | lcmlen

| | setara

| | lcmget

| | rlsara

| | lcmsix

| | kdropn

| | lcmexp

| | kdrcls

| | lcmput

| | lcmop

| | lcmadd

| | lcmcl

| | lcmult

| | lcmlib

| drvadd

IGE-158 The GAN Generalized Driver 44

| | xabort

| | kdropn

| | lcmexp

| | kdrcls

| | lcmadd

| drvmpx

| | xabort

| | kdropn

| | lcmexp

| | kdrcls

| | redget

| | lcmult

| drvsta

| | xabort

| | lcmsta

| | | lcmval

| | | lcmnxt

| | | kdropn

| | | xabort

| | | lcmexp

| | | lcmsix

| | | lcmlen

| | | setara

| | | lcmget

| | | rlsara

| | | kdrcls

| drvbac

| | xabort

| | redget

| | lcmsix

| | lcmequ

| drvrec

| | redget

| | xabort

| | lcmlen

| | lcmsix

| | lcmequ

| drvgrp

| | xabort

| | redget

| | lcmsix

| | lcmlen

| | setara

| | lcmget

| | redput

| | rlsara

| drv000

| | xabort

| | redget

| | lcmsix

| | lcmput

| | lcmget

| | redput

| kdrprm

| | lcmsix

| | lcmget

| | lcmcar

| | lcmput

| | redget

| | redcls

| | kdrdmd

| | | redget

IGE-158 The GAN Generalized Driver 45

| | | lcmsix

| | | lcmget

| | kdrdll

| | | redget

| | | lcmsix

| | | lcmget

| | kdrdxf

| | | redget

| | | lcmsix

| | | lcmget

| | kdrdsb

| | | redget

| | | lcmsix

| | | lcmget

| | | lcmput

| | | lcmcar

| | kdrdsa

| | | redget

| | | lcmsix

| | | lcmget

| | | lcmput

| | | lcmcar

| | kdrdda

| | | redget

| | | lcmsix

| | | lcmget

| | | lcmput

| | | lcmcar

| | redopn

| kdrdpr

| | redget

| | lcmsix

| | lcmget

| | lcmcar

| | kdropn

| | clepil

| | | clelog

| | | clestk

| | | clexrf

| | objpil

| | | objstk

| | | objxrf

| | kdrcls

| | lcmput

| kdrdmd

| | redget

| | lcmsix

| | lcmget

| kdrdll

| | redget

| | lcmsix

| | lcmget

| kdrdxf

| | redget

| | lcmsix

| | lcmget

| kdrdsb

| | redget

| | lcmsix

| | lcmget

| | lcmput

| | lcmcar

IGE-158 The GAN Generalized Driver 46

| kdrdsa

| | redget

| | lcmsix

| | lcmget

| | lcmput

| | lcmcar

| kdrdda

| | redget

| | lcmsix

| | lcmget

| | lcmput

| | lcmcar

| clecop

| kdrcln

| | lcmnxt

| | lcmsix

| | lcmget

| | lcmcar

| | lcmop

| | lcmcl

| | kdropn

| | kdrcls

| | lcmput

| kdrfst

IGE-158 The GAN Generalized Driver 47

3.3 The KERNEL function

The main routine provided by the generalized driver is its kernel. The kernel is responsible for

driving the application and for giving some error messages in the case something goes wrong.

The calling syntax for the kernel is the following:

IMODUL= KERNEL(CMODXT,NMODXT,ILEVEL,MAXENT,

CLECST,IPRINT,

NENTRY,HENTRY,IENTRY,JENTRY,KENTRY)

input parameters:

CMODXT : character*12 vector containing the module names of the application.

NMODXT : number of modules in the application.

ILEVEL : current computational level. It must be set to 0 as beginning. It is changed inside

the kernel.

MAXENT : maximum number of linked lists or files allowed in a single module call.

Suggested value: between 8 and 64.

CLECST : external routine proving application-dependent parameters to be used in the

CLE-2000 compiler. i Default routine has this name.

IPRINT : printing level for the kernel.

Suggested value: 0.

ouput parameters:

IMODUL : current number of the application module to be processed if positive. If zero or

negative, there was a kernel error.

ILEVEL : current computational level. The kernel will add one to this value each time a

new source file is processed, subtract one each time the source file directives are

finished.

NENTRY : Number of linked lists or files to be used by the next module.

HENTRY : character*12 name of each linked list or file.

IGE-158 The GAN Generalized Driver 48

IENTRY : Type of data structure:

=1 linked list;

=2 xsm file;

=3 sequential binary file;

=4 sequential ascii file;

=5 direct access file.

JENTRY : Mode of the data structure:

=0 the linked list or file is created in the module.

=1 the linked list or file is opened for modifications in the module;

=2 the linked list or file is opened in read-only mode.

KENTRY : File unit number or linked list address.

These values (except possibly the returned value IMODUL) should not be modified by

any module, because these are needed by the kernel on its next call. As explained above, an

application based on this kernel is an infinite loop that:

calls the KERNEL function, recovers the module number IMODUL ;

launches the module IMODUL, waits that it ends;

this proceeds until it ends with ILEVEL=0 or crashes (the final result generally depending on

user’s experience).

The kernel uses the CLE-2000 compiler’s routines[4] which will not be described here.

However, the kernel also uses some extensions that we will now describe:

IGE-158 The GAN Generalized Driver 49

3.4 Input probing

It is not possible to detect any mistake that can happen with user’s input. A minimal job is

done using the OBJPIL tools; the idea is to detect errors of the following types:

a module, procedure, linked list or file was used before being declared;

a module or procedure is not available in this application or calculation.

3.4.1 OBJPIL

For each procedure to be compiled (including the main user’s input), the kernel calls the following

integer function which has 4 input arguments and 1 output argument:

IRETCD=OBJPIL(IUNITO,IWRITE,CMODXT,NMODXT)

input parameters:

IUNITO : unit number of the CLE-2000 direct-access file. Usually, the file name has the

extension *.o2m.

IWRITE : unit number where comments will be printed.

CMODXT : character*12 vector containing the module names of the application.

NMODXT : number of modules in the application.

The output value IRETCD is zero when no error was encountered when compiling the file. The

OBJPIL is a concatenation of 2 successive routine calls to OBJSTK and OBJXRF whose

functions will now be explained.

3.4.2 OBJSTK

Call used to set up a list of declared names and check consistence.

IRETCD=OBJSTK(IUNITO,IWRITE,CMODXT,NMODXT)

The arguments are the same as in OBJPIL . This routine is called by OBJPIL , and should

therefore be never directly used by developers.

IGE-158 The GAN Generalized Driver 50

3.4.3 OBJXRF

Call used to perform cross-reference of linked lists and files from data of the source file.

IRETCD=OBJXRF(IUNITO,IWRITE)

This cross-reference is printed onto IWRITE unit when the user ask for it in the QUIT state-

ment. The arguments have the same meaning as in OBJPIL . This routine is called by OBJPIL

, and should therefore be never directly used by developers.

IGE-158 The GAN Generalized Driver 51

3.5 File management

3.5.1 KDROPN

Command used to allocate a file unit associated to a given file name. Sequential (ascii or

binary) and direct access (xsm or not) files are permitted. The generalized driver is responsible

for making all the KDROPN calls required to allocate the interface files used by a module.

The only use of this call is therefore to allocate a temporary (i.e., scratch) file from inside a

module.

Every file used by an application based on the generalized driver should be allocated through

KDROPN .

IUNIT=KDROPN(CUNAME,IACTIO,IUTYPE,LRDA,IHANDL)

input parameters:

CUNAME : character*72 name of the file we want to allocate.

IACTIO : action type:

=0 to allocate a new file;

=1 to access and modify an existing file;

=2 to access an existing file in read-only mode.

IUTYPE : file type:

=1 xsm file;

=2 sequential unformatted;

=3 sequential formatted (i.e., ascii file); =4 direct access (DA) unformatted file.

LRDA : number of single words in a DA record (given with IUTYPE equal to 4 only;

otherwise set to zero).

IHANDL : pointer to the xsm file handle (given with IUTYPE equal to 1 only; otherwise set

to zero).

ouput parameter:

IUNIT : unit number or error status value:

>0 unit number allocated;

IGE-158 The GAN Generalized Driver 52

=-1 no more units available;

=-2 file type requested inconsistent with existing type;

=-3 file already opened;

=-4 CUNAME is a reserved name;

=-5 illegal value of IUTYPE;

=-6 error on open of xsm file;

=-7 error on open of unformatted sequential file;

=-8 error on open of formatted sequential (i.e., ascii) file;

=-9 error on open of DA file; =-10 illegal value of LRDA;

=-11 DA record length (LRDA) inconsistent with existing length.

3.5.2 KDRCLS

Command used to close and release a file unit. Sequential (ascii or binary) and direct access

(xsm or not) files are permitted. The generalized driver is responsible for making all the KDR-

CLS calls required to close and release the interface files used by a module. The only use of

this call is therefore to close and release a temporary (i.e., scratch) file from inside a module.

Every file used by an application based on the generalized driver should be closed and released

through KDRCLS .

IERR=KDRCLS(ITAPNO,IACTIO)

input parameters:

ITAPNO : unit number:

=0 to close all the open units;

>0 unit to close.

IACTIO : action type:

=1 to keep the file;

=2 to delete the file.

ouput parameter:

IERR : completion code:

=0 the unit is successfully closed;

IGE-158 The GAN Generalized Driver 53

=-2 the unit was not previously opened;

=-3 the unit has been opened by routines other than KDROPN;

=-4 file unit is reserved (5,6);

=-5 illegal unit number;

=-6 error on close of xsm file;

=-7 error on close of unformatted sequential file;

=-8 error on close of formatted sequential (i.e., ascii) file);

=-9 error on close of DA file; =-10 illegal value of IACTIO.

3.5.3 KDRFST

Command used to return the unit allocated to file with name CUNAME or the file name allocated

to unit ITAPNO. Also it returns the type IUTYPE of that file, the record length LRDA if IUTYPE=4,

and the pointer IHANDL to the xsm file handle if IUTYPE=1.

IERR=KDRFST(CUNAME,ITAPNO,LRDA,IHANDL)

input parameters:

CUNAME : blank character (’ ’) or character*72 name of the file for which we want the

unit number.

ITAPNO : unit number of the file for which we want the character*72 name.

ouput parameters:

CUNAME : character*72 name of the file (if CUNAME=’ ’ at input).

ITAPNO : unit number of the file (if CUNAME is defined at input).

LRDA : number of single words in a DA record (given with IUTYPE equal to 4 only;

otherwise set to zero).

IHANDL : address of the xsm file handle (given with IUTYPE equal to 1 only; otherwise set

to zero).

IERR : completion code:

>0 value of IUTYPE;

=-2 the unit was not previously opened;

IGE-158 The GAN Generalized Driver 54

=-3 the unit has been opened by routines other than KDROPN;

=-4 file unit is reserved (5,6);

=-5 illegal unit number.

IGE-158 The GAN Generalized Driver 55

3.6 The LCM software

The programmer of a scientific application needs to know only a subset of the GANLIB library

to work with linked lists or files. For example, record RECORD8 of the linked list represented

in Fig. 1 can be recovered from within an application-dependent module using the following

toolbox calls:

CALL LCMSIX(KENTRY(I),’DIRECTORY1’,1)

CALL LCMSIX(KENTRY(I),’DIRECTORY3’,1)

CALL LCMLEN(KENTRY(I),’RECORD8’,ILENGT,ITYLCM)

CALL LCMGET(KENTRY(I),’RECORD8’,DATA)

CALL LCMSIX(KENTRY(I),’ ’,2)

CALL LCMSIX(KENTRY(I),’ ’,2)

where calls to LCMSIX are used to move in the hierarchical structure of the linked list whose

address is KENTRY(I). LCMLEN permits the length (ILENGT) and type (ITYLCM) of the record

RECORD8 to be recovered. Finally, LCMGET permits the record RECORD8 to be loaded into a vector

DATA(I) of dimension greater than or equal to ILENGT.

Each linked list or xsm file is referred by an integer variable IPLIST containing the address

of its handle. A linked list keeps the same IPLIST throughout its existence entire whereas an

xsm file uses a different IPLIST each time it is reopened.

The detailed specification of these calls will now be presented.

3.6.1 LCMSET

These routines are used to translate character variables into integer vectors back and forth, The

routine LCMSET is portable and base on the ascii collating sequence. The KERNEL routine

initializes this translation by calling:

CALL LCMSET

This sets up a look-up table that can then be used.

3.6.2 LCMCAR

Whenever a developer wants to do a character/integer conversion, he should call:

CALL LCMCAR(TEXT,LACTIO,NITMA)

IGE-158 The GAN Generalized Driver 56

input/output parameters:

LACTIO : logical value if .TRUE., then translation from character to integer. Otherwise,

translation from integer to character.

TEXT : character variable whose length must be a multiple of 4.

NITMA : integer vector whose dimension agrees with LEN(TEXT)/4.

The LCMCAR translator was found to be faster than the usual internal read of FORTRAN.

In all cases, when exporting data onto a sequential ascii file, the characters are always visible

(as long as developers have used the character type in their LCMPUT calls).

3.6.3 LCMOP

Call used to open a linked list (or an xsm file). The generalized driver is responsible for making

all the LCMOP calls required to open the linked lists and xsm files used by a module. The

only use of this call is therefore to open a temporary (i.e., scratch) linked list (or xsm file) from

inside a module.

CALL LCMOP(IPLIST,NAMP,IMP,MEDIUM,IMPX)

input parameters:

IPLIST : address of a linked list or address of the handle of a xsm file if IMP=1 or IMP=2.

NAMP : character*12 name of the linked list (or xsm file) if IMP=0.

IMP : opening mode:

=0 to create a new linked list (or xsm file);

=1 to modify an existing linked list (or xsm file);

=2 to access a linked list (or xsm file) in read-only mode.

MEDIUM : kind of medium:

=1 use a linked list;

=2 use an xsm file.

IMPX : print parameter. Equal to zero to suppress printing.

output parameters:

IGE-158 The GAN Generalized Driver 57

IPLIST : address of a linked list or address of the handle of a xsm file if IMP=0.

NAMP : character*12 name of the linked list (or xsm file) if IMP=1 or IMP=2.

3.6.4 LCMLEN

Command used to recover the length and type of a directory or a block of information stored in

the active directory of a linked list (or in the active directory of an xsm file). The value of the

length recovered is the number of single words required to store the information. For example,

the length of a DOUBLE PRECISION array is twice its dimension.

CALL LCMLEN(IPLIST,NAMP,ILONG,ITYLCM)

input parameters:

IPLIST : address of a linked list or address of the handle of an xsm file.

NAMP : character*12 name of the block or directory.

output parameters:

ILONG : length in single words of the block.

=-1 is returned for a directory;

=0 is returned if the block or directory does not exist.

ITYLCM : Type of information:

=0 directory;

=1 integer;

=2 single precision real;

=3 character*4 data;

=4 double precision real;

=5 logical;

=6 complex number;

=7 undefined (7 is returned if the block or directory does not exist.

3.6.5 LCMGET

Command used to recover a block of information stored in the active directory of a linked list

(or in the active directory of an xsm file) and copy it into core memory.

IGE-158 The GAN Generalized Driver 58

CALL LCMGET(IPLIST,NAMP,DATA)

input parameters:

IPLIST : address of a linked list or address of the handle to a xsm file.

NAMP : character*12 name of the block to recover. An abort is performed if this block

does not exist.

output parameters:

DATA : vector of dimension at least ILONG into which the block has been copied.

The subroutine LCMGET can be used to recover character data written in a block. There

are two ways to do such a thing. Firstly, a block of length 5 named NAMP stored in the active

directory of the linked list (or xsm file) pointed to by IPLIST is recovered using LCMGET and

copied into the character*20 variable named HNAME using an internal WRITE statement:

CHARACTER NAMP*12,HNAME*20

INTEGER IDATA(5)

IPLIST=...

NAMP=...

CALL LCMGET(IPLIST,NAMP,IDATA)

WRITE(HNAME,’(5A4)’) (IDATA(I),I=1,5)

Secondly, it is also possible to use the LCMCAR routine. In that case, the same code looks

like:

CHARACTER NAMP*12,HNAME*20

INTEGER IDATA(5)

LOGICAL LACTIO

IPLIST=...

NAMP=...

CALL LCMGET(IPLIST,NAMP,IDATA)

LACTIO=.FALSE.

CALL LCMCAR(HNAME,LACTIO,IDATA)

It is not recommended to mix both ways of doing conversion inside the same module because

this may product side effects.

3.6.6 LCMPUT

Command used to store a block of information in the active directory of a linked list (or in the

active directory of an xsm file). The information is copied from the core memory into the linked

list. If the block already exists, it is replaced; otherwise, it is created. This operation cannot be

performed on a linked list or xsm file open in read-only mode.

IGE-158 The GAN Generalized Driver 59

CALL LCMPUT(IPLIST,NAMP,ILONG,ITYLCM,DATA)

input parameters:

IPLIST : address of a linked list or address of the handle of an xsm file.

NAMP : character*12 name of the block.

ILONG : length in single words of the block. If a block contain N double precision values,

ILONG should be set to 2×N .

ITYLCM : Type of information:

=1 integer;

=2 single precision real;

=3 character*4 data;

=4 double precision real;

=5 logical;

=6 complex number;

=7 undefined.

DATA : vector of dimension at least ILONG from which the block is copied. The first

ILONG elements of DATA should be properly initialized before the call to LCMPUT

is performed.

The subroutine LCMPUT can be used to store character data in a block. Once more, there

are two ways of doing it. Firstly, a character*20 variable named HNAME will be copied into the

integer array of length 5 named IDATA using an internal READ statement and stored as a block

named NAMP in the active directory of the linked list (or xsm file) pointed to by IPLIST using

LCMPUT :

CHARACTER NAMP*12,HNAME*20

INTEGER IDATA(5)

IPLIST=...

NAMP=...

READ(HNAME,’(5A4)’) (IDATA(I),I=1,5)

CALL LCMPUT(IPLIST,NAMP,5,3,IDATA)

Secondly, using the LCMCAR routine, the same code looks like:

CHARACTER NAMP*12,HNAME*20

INTEGER IDATA(5)

LOGICAL LACTIO

IGE-158 The GAN Generalized Driver 60

IPLIST=...

NAMP=...

LACTIO=.TRUE.

CALL LCMCAR(HNAME,LACTIO,IDATA)

CALL LCMPUT(IPLIST,NAMP,5,3,IDATA)

It is not recommended to mix both ways of doing conversion inside the same module because

this may product side effects. If the combination LCMCAR /LCMPUT was used, then it is

expected that values will be recovered using the combination LCMGET /LCMCAR .

3.6.7 LCMSIX

Command used to move in the hierarchical structure of a linked list (or in the the hierarchical

structure of an xsm file) or to change the active directory. If the linked list or xsm file is open

in read-only mode, a move to a non-existent directory cannot be performed.

CALL LCMSIX(IPLIST,NAMP,IACT)

input parameters:

IPLIST : address of a linked list or address of the handle of an xsm file.

NAMP : character*12 name of the daughter directory if IACT=1. This parameter is not

used if IACT=0 or IACT=2.

IACT : Type of movement.

=0 move back to the root directory;

=1 move to a daughter directory named NAMP (create it if it does not already

exist);

=2 move back to the parent directory.

3.6.8 LCMNXT

Command used to find the name of the next block or directory in the active directory of a linked

list (or in the active directory of an xsm file).

CALL LCMNXT(IPLIST,NAMP,NAMLCM,NAMMY,LCM)

input parameters:

IGE-158 The GAN Generalized Driver 61

IPLIST : address of a linked list or address of the handle of an xsm file.

NAMP : character*12 name of an existing block or directory. NAMP=’ ’ can be used at

input to obtain the name of the first block or directory.

output parameters:

NAMP : character*12 name of the next block or directory. Returned as NAMP=’ ’ if the

directory is empty.

NAMLCM : character*12 name of the linked list or xsm file.

NAMMY : character*12 name of the active directory.

LCM : logical variable set to .TRUE. if the information is stored in a linked-list or set to

.FALSE. if the information is stored in an xsm file.

3.6.9 LCMIOF

Command used to recover a SETARA offset to a block of information stored in the active

directory of a linked list without making a copy of the information.

A call to LCMIOF can only be performed if the information is stored in a linked list (i.e.,

if LCM is .true.). If the information is modified, a call to LCMPOF should be subsequently

performed to acknowledge the modifications.

This function represents an advanced capability of the LCM software and it is only intended

to be used in situations where the reduction of CPU resources is a primary issue. An offset is re-

turned in a vector BASE stored in a common block of the form COMMON BASE(1). A call to LCMIOF

does not cause any modification to the linked list. The useful information is therefore found

from BASE(IOFDUM) to BASE(IOFDUM+ILONG-1). The programmer of a scientific application

should never try to release BASE(IOFDUM).

IOFDUM=LCMIOF(IPLIST,NAMP)

input parameters:

IPLIST : address of a linked list or address of the handle of an xsm file.

NAMP : character*12 name of the block to recover. An abort is performed if this block

does not exist.

IGE-158 The GAN Generalized Driver 62

ouput parameters:

IOFDUM : SETARA offset of the information.

3.6.10 LCMPOF

Command used to store a block of information in the active directory of a linked list (or in the

active directory of an xsm file) without making a copy of the information. If the block already

exists, it is replaced; otherwise, it is created. This operation cannot be performed on a linked

list or xsm file that is open in read-only mode.

If the entry NAMP already exists, its SETARA pointer is replaced by the new one in the

LCM database and the information pointed to by the old SETARA pointer is deallocated.

This function represents an advanced capability of the LCM software and it is only intended to

be used in situations where the reduction of CPU resources is a primary issue. The information

stored by LCMPOF should have been previously allocated by a call to SETARA of the form CALL

SETARA(BASE,ILONG,IOFDUM) where BASE is a vector stored in a common block of the form

COMMON BASE(1).

CALL LCMPOF(IPLIST,NAMP,ILONG,ITYLCM,IOFDUM)

input parameters:

IPLIST : address of a linked list or address of the handle of an xsm file.

NAMP : character*12 name of the block.

ILONG : length in single words of the block.

ITYLCM : Type of information:

=1 integer;

=2 single precision real;

=3 character*4 data;

=4 double precision real;

=5 logical;

=6 complex number;

=7 undefined.

IGE-158 The GAN Generalized Driver 63

IOFDUM : SETARA offset to the information. The elements of BASE(IOFDUM) to BASE(IOFDUM+ILONG-1)

should be properly initialized before the call to LCMPOF is performed.

ouput parameters:

IOFDUM : IOFDUM=0 at output to indicate that the information previously pointed by IOFDUM

is now managed by the LCM software.

3.6.11 LCMDEL

Command used to delete a block of information stored in the active directory of a linked list.

The LCMDEL capability is not available with an xsm file.

CALL LCMDEL(IPLIST,NAMP)

input parameters:

IPLIST : address of a linked list.

NAMP : character*12 name of the block to delete.

3.6.12 LCMLIB

Command used to print the content of the active directory of a linked list (or the active directory

of an xsm file).

CALL LCMLIB(IPLIST)

input parameters:

IPLIST : address of a linked list or address of the handle of an xsm file.

3.6.13 LCMADD

Command used to add the floating point information contained in the active and daughter

directories of two linked lists (or the active directories of two xsm files). The result is stored in

the linked list or xsm file pointed to by IPLIS2.

CALL LCMADD(IPLIS1,IPLIS2)

IGE-158 The GAN Generalized Driver 64

input parameters:

IPLIS1 : address of the first linked list or address of the handle of the first xsm file.

IPLIS2 : address of the second linked list or address of the handle of the second xsm file.

ouput parameter:

IPLIS2 : address of the linked list or address of the handle of the xsm file containing the

result of the addition.

3.6.14 LCMULT

Command used to multiply the floating point information contained in the active and daughter

directories of a linked list (or the active directories of an xsm file) by a real number FLOTT. The

result is stored in the linked list or xsm file pointed to by IPLIST.

CALL LCMULT(IPLIST,FLOTT)

input parameter:

IPLIST : address of the linked list or address of the handle of the xsm file.

FLOTT : real number used to multiply the linked list or the xsm file.

ouput parameter:

IPLIST : address of the linked list or address of the handle of the xsm file containing the

result of the multiplication.

3.6.15 LCMEQU

Command used to copy the information contained in the active and daughter directories of the

linked list or xsm file pointed to by IPLIS1 into the linked list or xsm file pointed to by IPLIS2.

Note that the second linked list (or xsm file) is modified but not created by LCMEQU .

CALL LCMEQU(IPLIS1,IPLIS2)

input parameters:

IGE-158 The GAN Generalized Driver 65

IPLIS1 : address of the existing linked list or address of the handle of the existing xsm file

(accessed in read-only mode).

IPLIS2 : address of the linked list or address of the handle of the xsm file that will be

modified by LCMEQU.

ouput parameter:

IPLIS2 : address of the linked list or address of the handle of the xsm file modified by

LCMEQU.

3.6.16 LCMSTA

Command used to compare the floating point information contained in the active and daughter

directories of two linked lists (or the active directories of two xsm files). The absolute maximum

and averaged differences are printed on the output listing.

CALL LCMSTA(IPLIS1,IPLIS2)

input parameters:

IPLIS1 : address of the first linked list or address of the handle of the first xsm file.

IPLIS2 : address of the second linked list or address of the handle of the second xsm file.

3.6.17 LCMEXP

Command used to export (import) the content of a linked list or xsm file to (from) a sequential

binary or ascii file using the contour method. The export starts from the active directory.

CALL LCMEXP(IPLIST,IMPX,NUNIT,IMODE,IDIR)

input parameters:

IPLIST : address of the linked list or address of the handle of the xsm file that is to be

exported (or imported).

IMPX : print parameter (set to zero for no print).

NUNIT : unit number of the sequential file where the export is written (or from which the

import is recovered).

IGE-158 The GAN Generalized Driver 66

IMODE : status mode:

=1 for sequential binary export (import) file;

=2 for sequential ascii export (import) file.

IDIR : directive:

=1 to export;

=2 to import.

3.6.18 LCMVAL

Command used to validate a single entry or the complete active and daughter directories of a

linked list. If IPLIST refers to an xsm file, no action is performed. The validation consists of

checking the connections between the elements of the linked list, checking if every element of the

linked list is defined and checking possible memory overwriting on the linked list. If something

wrong is detected, the following message is issued:

LCMVAL: BLOCK xxx OF THE LINKED LIST yyy HAVE BEEN OVERWRITTEN.

The calling specification is:

CALL LCMVAL(IPLIST,NAMP)

input parameters:

IPLIST : address of a linked list or address of the handle of an xsm file.

NAMP : character*12 name of the block to be validated in the linked list. If NAMP=’ ’,

the active and daughter directories are validated.

3.6.19 LCMCL

Call used to close a linked list (or an xsm file). The generalized driver is responsible for making

all the LCMCL calls required to close the linked lists and xsm files used by a module. The

only use of this call is therefore to close a temporary (i.e., scratch) linked list (or xsm file) open

from inside a module.

CALL LCMCL(IPLIST,IACT)

IGE-158 The GAN Generalized Driver 67

input parameters:

IPLIST : address of a linked list or address of the handle of an xsm file.

IACT : action to take

=1 close the linked list without destroying it;

=2 destroy it.

output parameters:

IPLIST : IPLIST=0 at output to indicate that the linked list is destroyed or that the xsm

file is closed. A linked list keep the same IPLIST during all its existence. An xsm

file is handled by a different IPLIST each time it is re-opened.

3.7 Abort and exception handling

3.7.1 XABORT

Command used to perform a clean abort from inside a module. This subroutine perform the

following functions:

• close all the files previously opened by KDROPN , taking a special care to save the xsm

file buffers;

• print a message on the output listing;

• stop the execution.

This subroutine is mainly useful to process abnormal situations that can occurs in an ap-

plication. It is recommended to include the name of the current subroutine or function in the

XABORT message. For example, if something is going wrong in the SUB001 subroutine, we may

write:

CALL XABORT(’SUB001: EXECUTION FAILURE.’)

The detailed specification is:

CALL XABORT(HSMG)

input parameter:

HSMG : character message describing the abort conditions.

IGE-158 The GAN Generalized Driver 68

3.8 Dynamic allocation of memory in Fortran-77

This function allows FORTRAN-77 applications to dynamically allocate and release a zone of

memory by calling memory management functions of the underlying operating system (malloc

on UNIX computers). These capabilities are required in a modular application to adjust its core

storage to the size of the problem being analyzed.

3.8.1 SETARA

Command used to allocate a zone of memory and return an offset in a vector BASE stored in a

common block of the form COMMON BASE(1). If the operating system is unable to allocate ILONG

single words, an abort is performed.

CALL SETARA(BASE,ILONG,IOFDUM)

input parameters:

BASE : The address of BASE(1) is used as the origin by SETARA to compute IOFDUM.

ILONG : Length in single words of the allocated zone. To allocate a zone of memory to

store N double precision words, ILONG should be set to 2×N .

output parameters:

IOFDUM : Offset of the allocated zone in the BASE vector. The allocated zone is therefore

found from BASE(IOFDUM) to BASE(IOFDUM+ILONG-1).

Note that BASE(1) should never be declared as a double precision vector because the offset

IOFDUM is computed by assuming that BASE contains only single words.

3.8.2 RLSARA

Command used to release a previously allocated zone of memory. If the operating system is

unable to release the memory zone, an abort is performed.

CALL RLSARA(BASE(IOFDUM))

input parameters:

BASE(IOFDUM) : Offset in BASE of the first word of the memory zone to be released.

IGE-158 The GAN Generalized Driver 69

3.8.3 Example of memory allocation in FORTRAN-77

In the first example, a memory zone is dynamically allocated, a record ’RECORD1’ is created and

copied into a linked list using the LCMPUT subroutine. A subroutine SUB is called to facilitate

the creation of the record:

COMMON BASE(1)

.

.

.

ILONG=30

CALL SETARA(BASE,ILONG,IOFDUM)

CALL SUB(BASE(IOFDUM),ILONG)

CALL LCMPUT(IPLIST,’RECORD1’,ILONG,2,BASE(IOFDUM))

CALL RLSARA(BASE(IOFDUM))

RETURN

END

.

.

.

SUBROUTINE SUB(PHI,ILONG)

DIMENSION PHI(ILONG)

DO 10 I=1,ILONG

10 PHI(I)=REAL(I)

RETURN

END

In the second example, a memory zone is dynamically allocated, a record ’RECORD1’ is

created and stored in a linked list (without copying it) using the LCMPOF subroutine:

COMMON BASE(1)

.

.

.

ILONG=30

CALL SETARA(BASE,ILONG,IOFDUM)

CALL SUB(BASE(IOFDUM),ILONG)

CALL LCMPOF(IPLIST,’RECORD1’,ILONG,2,IOFDUM)

RETURN

END

.

.

.

SUBROUTINE SUB(PHI,ILONG)

DIMENSION PHI(ILONG)

DO 10 I=1,ILONG

10 PHI(I)=REAL(I)

RETURN

END

In the third example, a block stored in a linked list is recovered

• using the LCMIOF function, without copying it and without allocating memory (if

IPLIST is a linked list);

IGE-158 The GAN Generalized Driver 70

• using the LCMGET subroutine and copied into a zone of memory dynamically allocated

by SETARA (if IPLIST is an xsm file).

A subroutine SUB is called to facilitate the utilization of the recovered information:

COMMON BASE(1)

LOGICAL LCM

CHARACTER*12 NAMP,NAMLCM,NAMMY

.

.

.

NAMP=’ ’

CALL LCMNXT(IPLIST,NAMP,NAMLCM,NAMMY,LCM)

CALL LCMLEN(IPLIST,’RECORD1’,ILONG,ITYLCM)

IF(LCM) THEN

IOFDUM=LCMIOF(IPLIST,’RECORD1’)

CALL SUB(BASE(IOFDUM),ILONG)

ELSE

CALL SETARA(BASE,ILONG,IOFDUM)

CALL LCMGET(IPLIST,’RECORD1’,BASE(IOFDUM))

CALL SUB(BASE(IOFDUM),ILONG)

CALL RLSARA(BASE(IOFDUM))

ENDIF

RETURN

END

.

.

.

SUBROUTINE SUB(PHI,ILONG)

DIMENSION PHI(ILONG)

PRINT *,’VECTOR PHI CONTENT=’,(PHI(I),I=1,ILONG)

RETURN

END

IGE-158 The GAN Generalized Driver 71

4 CONCLUSION

The GAN generalized driver is not specific to lattice calculations and its use could be extended to

other aspects of engineering. Linked lists and modules can be defined to handle full core diffusion

calculations, fuel management and optimization, thermal-hydraulics, structural mechanics and

metallurgy. This would enable these topics to be easily interfaced without programming a

single line of FORTRAN. Finally, an expert system could be designed to manage the interaction

between all the modules and databases involved in the complete design study of a nuclear reactor.

Acknowledgements

This work has been carried out partly with the help of grants from Hydro-Québec and the

Natural Sciences and Engineering Research Council of Canada. We would like to thank my

beta-testers, Guy Marleau and Siamak Kaveh for their help in clarifying some error messages

issued by the driver.

References

[1] G. Marleau, A. Hébert and R. Roy, A User’s Guide for DRAGON, Report IGE-174 Rev.3,

Institut de Génie Nucléaire, École Polytechnique de Montréal, December 1997.

[2] E. Varin, A. Hébert, R. Roy and J. Koclas, A User’s Guide for DONJON, Report IGE-208,

Institut de Génie Nucléaire, École Polytechnique de Montréal, November 1996.

[3] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, “Numerical Recipes in

FORTRAN: The Art of Scientific Computing. Second Edition,” Cambridge U. P., Cam-

bridge, ISBN 0-521-43064-X (1994).

[4] R. Roy, The CLE-2000 Tool-box, Report IGE-163, Institut de Génie Nucléaire, École Poly-

technique de Montréal, December 1999.

Index

Routine

KDRCLS, 52

KDRFST, 53

KDROPN, 51, 67

KERNEL, 47, 55

LCMADD, 63

LCMCAR, 55, 56, 58–60

LCMCL, 66

LCMDEL, 63

LCMEQU, 64

LCMEXP, 65

LCMGET, 57, 58, 60, 70

LCMIOF, 61, 69

LCMLEN, 57

LCMLIB, 63

LCMNXT, 60

LCMOP, 56

LCMPOF, 61, 62

LCMPUT, 56, 58–60

LCMSET, 55

LCMSIX, 60

LCMSTA, 65

LCMULT, 64

LCMVAL, 66

OBJPIL, 49, 50

OBJSTK, 49

OBJXRF, 49, 50

RLSARA, 68

SETARA, 61, 62, 68

XABORT, 67

Structure

addition, 26

backup, 24

delete, 24

diraccess, 17

end, 35

equality, 20, 21

findzero, 29

free, 25

grep, 27

inputmode, 10

ioexternal, 32

linkedlist, 15

module, 14

multiply, 26

outputmode, 11

parameter, 18

procedure, 14

recover, 25

seqascii, 16, 17

seqbinary, 16

statistics, 27

util, 21

xsmfile, 15

User Input

BLOCK, 22, 27, 28

CONV L, 29, 30

FILE DA, 17, 18

72

IGE-158 The GAN Generalized Driver 73

FILE SA, 17

FILE SQ, 16

NAME1, 21–27

NAME2, 21, 24–27

NAME3, 21, 26

NAME DA, 17, 18

NAME LL, 15, 18, 19

NAME MD, 15

NAME PR, 14

NAME SA, 17–19

NAME SB, 16, 18, 19

NAME SQ, 16

NAME XF, 15, 18, 19

NAME, 22, 27, 29, 30

NAMPRM, 18

NEWZERO R, 29, 30

NOMALT, 22, 23

NOMDIR, 22, 27

NOMREF, 22, 23

VAL OUT, 32

VAR IN, 10, 27, 29, 32

VAR OUT, 11

dvalc, 22, 23

flott, 22, 23

hvalc, 22, 23

ilenc, 22, 23

ileni, 22

impr, 16–19

impx, 21, 24, 25

index1, 27–29

index2, 27–29

index3, 27, 28

itmax, 29

ivalc, 22, 23

nval, 27, 29

real, 26

recl, 17, 18

tol, 29, 30

valc, 22, 23

x1, 29, 30

x2, 29, 30

y1, 29, 30

y2, 29, 30

y3, 29, 30

Keyword

*, 22, 23, 27, 28

=, 22, 23

ABS, 22, 23

ADD, 22, 23

COPY, 22, 23

CREA, 22

DEBUG, 29

DIR, 22

DOWN, 22, 27

DUMP, 22, 23

EDIT, 16--19, 21, 24, 25

FILE, 16--18

GETVAL, 27

IMPR, 22

INDMAX, 27, 28

INDMIN, 27, 28

ITMAX, 29

IGE-158 The GAN Generalized Driver 74

MAXVAL, 27, 28

MEAN, 27, 28

MINVAL, 27, 28

MULT, 22

NVAL, 27, 29

POINT, 29, 30

RECL, 17, 18

REL, 22, 23

STAT, 22, 23

STEP, 22, 27

TOL, 29

UP, 22, 27

X, 29, 30

Y, 29, 30

MODULE

ADD:, 20, 26

BACKUP:, 20, 24

DELETE:, 20, 24

DIR ACCESS, 13, 17--19

END:, 20, 35

EQU:, 20, 21

FIND0:, 20, 29, 30, 32

FREE:, 20, 25, 26

GREP:, 20, 27

IOX:, 20, 32, 33

LINKED LIST, 13, 15, 18, 19

MODULE, 13--15

MPX:, 20, 26

PARAMETER, 13, 18

PROCEDURE, 13, 14

RECOVER:, 20, 25

SEQ ASCII, 13, 16--19

SEQ BINARY, 13, 16, 18, 19

STAT:, 20, 27

UTL:, 20--22

XSM FILE, 13, 15, 18, 19

