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Abstract - In this paper, a subtractive clustering based type-2 
Takagi-Sugeno-Kang (TSK) fuzzy logic process is used as a fuzzy 
filter to treat acceleration data for the purpose of obtaining the 
rigid-body dynamical parameters of robotic manipulators. 
Experimental results show the effectiveness of this method, which 
not only provides good accuracy of prediction of the rigid-body 
dynamical parameters of robotic manipulators, but also assesses 
the uncertainties associated with the modeling process and with 
the outcome of the model itself. A comparison of the results from 
the type-2 fuzzy logic filtering algorithm with its type-1 
counterpart is presented and limitation of those methods is 
discussed. 

 
 

I.  INTRODUCTION 

The past decades have seen increasing use of robotic 
manipulators to accomplish a wide range of tasks in a wide 
range of environments. In the industry, robots have been used 
for arc- and spot-welding, paint-spraying, die-casting, pick-
and-place, assembly, and many other applications [1].   

Robotic manipulators are complicated systems, composed 
of a control system including its software and power 
electronics, as well as a complicated assembly of actuators and 
links. Among many research issues, a thorough understanding 
of its mechanics—in particular, its dynamics—is essential to 
the design and control of robotic manipulators. Derivation of 
the dynamic model of a robot is of uttermost importance to 
accurately simulate its motion. The analysis of robotic 
structures and design of control algorithms can also be 
significantly accelerated with the help of a dynamic model [2]. 
Simulating robot motions allows testing of control strategies 
and provides insight of motion planning techniques without 
the need of a physically available system. Computation of the 
forces and torques required for typical motions provides useful 
information when designing joints and transmissions or 
selecting actuators. Using a dynamic model to solve motion 
simulation and compute control inputs require the knowledge 
of the values of each dynamic parameter used in the robot 
model.  

However, the dynamic parameters are not easily 
quantifiable. Standard industrial robot controllers do not use 
them and therefore, manufacturers usually do not provide 
them in their documentations. Moreover, design 
considerations may cause the links to exhibit complex shapes 

and to be composed of various parts. Hence, computing their 
values, even with a CAD software package can be impractical. 
It is technically possible to estimate the parameters by 
disassembling the robot to perform weighing, balancing, and 
pendulum tests on the individual parts [3]. Nevertheless, this 
approach can be impractical for certain robots and is very 
time-consuming.   

In the mid-80’s, significant contributions were made to 
the identification of dynamic parameters problem via the 
standard least-square technique, where the estimates of the 
parameters are computed from generalized force and motion 
data collected while the manipulator executes a trajectory [2]. 
One major difficulty in this technique is the need of 
differentiating the (noisy) signal from the joint position sensor 
to obtain velocities and accelerations that yields significant 
errors into the identification process. Moreover, many 
identification methods proposed in the literature were applied 
to industrial robots with geared transmission, which have 
significant unmodeled dynamics [4]. Because of the elasticity 
and backlash existing in these units, many industrial robots 
exhibit serious vibrational behaviour. Thus, a potentially 
significant amount of errors both in the data and the dynamic 
modeling might result in erroneous identification.  

In this paper, accelerometers are used to estimate the joint 
velocities and accelerations. Since the robot has both rigid and 
flexible elements, it is necessary to extract the rigid-body 
dynamics component from the data in order to identify those 
inertial parameters. Therefore, the type-2 Takagi-Sugeno-
Kang (TSK) fuzzy logic filtering algorithm is designed to not 
only filter out the vibrating components in the measurement 
data, but also obtain the uncertainties associated with the 
system, even the measurements.  The information about 
uncertainties increases the credibility of assessments by 
explicitly describing the magnitude and direction of 
uncertainties, and providing the basis for efficient data 
collection or application of refined methods.  

In the type-2 TSK identification algorithm [5], subtractive 
clustering method [6, 7] is combined with least- squares 
estimation algorithm to pre-identify a type-1 FLS from 
input/output data. Then using type-2 TSK FLS theory [8] 
expand the type-1 FLS to a type-2 TSK FLS. Minimum error 
models are obtained through enumerative search of optimum Prep
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values for spreading percentage of cluster centres and 
consequent parameters. 
 This paper is divided into five sections. Section I contains 
the problem description and some introductory remarks. 
Section II recalls type-2 TSK FLS identification algorithm [5]. 
Section III introduces the experimental setup and acceleration 
measurements. Section IV includes experimental results and a 
comparison between the results from the type-2 fuzzy logic 
filtering algorithm with its type-1 counterpart and the 
traditional digital filtering techniques, also limitation of those 
methods and sources of uncertainties associated with the 
modeling system are discussed. Concluding remarks follow in 
Section V.  
 
 

II. . TYPE-2 TSK MODELING  
USING SUBTRACTIVE CLUSTERING 

 
 

The type-2 TSK FLS modeling algorithm [5], type-1 
Gaussian membership functions (MFs) is an extension of the 
type-1 TSK FLS modeling algorithm proposed in [6, 7].  The 
proposed type-2 TSK modeling identification algorithm is as 
follow: 

 
Step 1:  

Use Chiu’s subtractive clustering method [6, 7] combined 
with a least-squares estimation algorithm to pre-identify a 
type-1 fuzzy model from input/output data. For a multi-input 
single-output (MISO) first–order model, its kth rule can be 
expressed as: 
 

IF  1x is kQ1  and 2x  is kQ2  and … and nx is nkQ ,  
THEN   Z is 

n
k
n

kkkk xpxpxppw ++++= ...22110
,         (1)                                        

 
where 1x , 2x  , … , nx  and Z are linguistic variables; kQ1 , 

kQ2 , …, and nkQ  are type-1 fuzzy sets on universe of 
discourses 1X , 2X ,…, and nX  and k

n
kkk pppp ,...,,, 210  are 

constant regression parameters.  
MFs and number of rules of a type-1 TSK ssytem are 

identified by subtractive method, and the consequent 
parameters are identified by least squares estimation 
algorithm.  

The jth MF is expressed as 
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where ∗

jkx is the jth input feature of kth cluster center, σ  is 
the standard deviation  of  Gaussian MF,  given as 
 
 

 

ασ 2
1=                                                                                                                 (3) 

 
with 2/4 ar=α

 
where ar  is the hypersphere cluster radius in 

data space which defines a neighborhood.   
 

Step 2:  
Calculate root-mean-square-error (RMSE) of the model. If 

RMSE is bigger than expected error limitation, go to Step 3. If 
not, end program, which means the type-1 model is 
acceptable, using a type-2 TSK model is not needed.  

 
Step 3:  

Use type-1 Gaussian MFs as principle MFs to expand 
type-1 TSK model to type-2 TSK model: 

• spread cluster centre to expand premise MFs from 
type-1 fuzzy sets to type-2 fuzzy sets;  

• different value assigned to the deviation of each 
variable in each rule;  

• spread the parameters of consequence to expand 
consequent parameters from certain value to fuzzy 
numbers. 

By doing so, a type-2 model is obtained. Equation (1) is 
transformed to (4), namely 
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where k

ja  is spread percentage of cluster centre ∗
jkx  as 

depicted in Fig.1, and  k
jσ  is the deviation of jth variable in kth 

rule. 
       Furthermore  
  
        )1(

~
k
j

k
j

k

j bpp ±=  ,                                                       (6) 
   
where k

jb  is the spread percentage  of fuzzy numbers  k

jp
~ . 
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Fig. 1 Spread of cluster center 

 
Step 4:  

By using Mendel’s interval type-2 TSK FLS computation 
method [2], obtain the interval value of the consequent for 
each input and obtaining the two end-points of output interval 
set and average value of output.  
 
Step 5:  

Calculate RMSE of this type-2 model. If RMSE is bigger 
than expected error limitation, go to Step3. If not, end 
program, which means a type-2 TSK model is obtained. 
  

Minimum error models are obtained through enumerative 
search of optimum values for spreading percentage of cluster 
centres and consequent parameters because RMSE of the type-
2 model is very sensitive to spreading percentage of cluster 
centres and the interval sets of output are very sensitive to 
spreading percentage of consequent parameters [9]. In this 
research, we are interested in both, the RMSE and interval sets 
of output.  
 

III. EXPERIMENTAL SETUP AND ACCELERATION 
MEASUREMENTS 

 

For the purpose of dynamic parameter identification, we 
propose to estimate the joint velocities and accelerations from 
external sensing devices. A possible choice of technology for 
these devices consists in using inertial measurement units 
(IMUs), which estimate the linear and angular motions of a 
rigid body with respect to a fixed inertial frame. By attaching 
a unit to the end-effector of a robot, it is possible to estimate 
its angular velocity and acceleration, composed of all the 
relative motions between the connected links of the robot. If 
only one joint of the robot is moving while the others are 
locked, the IMU senses the angular velocity and acceleration 
of the moving links connected from this joint to the end-
effector. In fact, the sensed motion data are nothing but the 
angular velocities and accelerations of the only actuated joint. 
These data should be more accurate than those obtained from 

differentiating joint positions, and consequently, better 
parameter estimation can be achieved. 

The compliance of the driving systems must be 
considered when using external measurements. In many 
electric-powered robots, each joint is driven through a 
reduction gear such as harmonic drive. Therefore, the external 
sensors are measuring the motion resulting from both rigid-
body dynamics and flexibility in the transmission. 
 As shown in Fig. 2, the CRS plus A-460 robot is 
employed for the experimental verification of the proposed 
method. It is a small, six degrees of freedom (DOF) robot 
manufactured by CRS Plus Inc. of Burlington, Canada. Its 
main industrial use is for automation of light industrial tasks 
such as small parts assembly, inspection and quality control. 
The first joint of the robot is used to provide the angular 
motion for our acceleration measurements. In an electric-
powered robot, each joint is driven through a reduction gear 
such as harmonic drive. Therefore, the external sensors are 
measuring the motion resulting from both rigid-body 
dynamics and flexibility in the transmission.  
 

 

 
Fig. 2  CRS plus A-460 manipulator. 

 
 
        An experiment with a simple configuration of the robot is 
used to illustrate the data acquisition and processing 
procedure. In this case, only the first joint of the CRS robot is 
moved while others are locked. Thus the kinematic model can 
be simplified to a single DOF mechanism as displayed in Fig. 
3. Therein, two accelerometers are placed on the end-effector 
in order to measure the accelerations of two points along 
orthogonal directions. The arrows drawn on Fig. 3 denote the 
direction of the acceleration being sensed. If the joint and the 
link are rigid, the measured accelerations are related to the 
angular velocity and acceleration as 
 
 11 ra θ=                                                                  (7) 
 
 2

2
2 ra θ=                                                               (8) 
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where, 1a  and 2a are the measured accelerations of 

accelerometer 1 and 2, respectively; θ  and θ  are joint 
velocity and acceleration; and 1r  and 2r  denote the distances 
from the accelerometer 1 and 2 to the joint axis.  
   
  

 
Fig. 3  One joint mechanism 

 
 In our experimental setup, the joint is programmed to 
perform a trapezoidal velocity motion: first, constant 
acceleration; then constant velocity; last, constant 
deceleration. Meantime, real-time data are acquired from the 
two accelerometers by means of data acquisition hardware. 
Then a data filtering algorithm is used to analyze the data and 
classify the results in order to make a reliable estimation of 
joint velocity and acceleration. Fig. 4 and Fig. 5 show the 
acceleration measurements from the two accelerometers. 
There are significant vibrations observed from the acceleration 
signal in them. This demonstrates the necessity to design a 
proper filtering process to eliminate the vibrating component 
from the data in order to identify the rigid-body dynamics of 
the manipulator.    
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Fig. 4  The acceleration  measurement from accelerometer 1 
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Fig. 5  The acceleration  measurement from accelerometer 2 

 
 

IV. DATA PROCESSING 
      
A. Data Filtering  
 
 As shown in Fig. 6, the part of the data from 
accelerometer 2 is processed by the designed type-2 fuzzy 
logic filter to demonstrate its effectiveness. 
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Fig. 6 Experimental data 

 
 By using our type-2 TSK fuzzy logic identification 
algorithm described in Section II, a 7 rules type-2 TSK fuzzy 
logic filter is obtained to filter noise in the experimental data. 
The membership functions of the fuzzy system are shown in 
Fig. 7. 
 Figure 8 indicates the system output information: sensor 
output, output of pre-identified type-1 system and the three 
outputs of type-2 system: average output, upper output and 
lower output. Comparing with type-1 FLS, the type-2 FLS 
provides more information, not only crisp output (average 
output) as that of type-1 TSK FLS, but also the interval set of 
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the output. This interval set of the output (the area between the 
upper output and lower output) has the information about the 
uncertainties that are associated with the crisp output, and this 
information can only be obtained by working with type-2 TSK 
FLS.   
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Fig. 7  Type-2 membership functions

 

Fig. 8   Type-2 fuzzy logic filtering    

 

B. Sources of Uncertainties 
 There are several possible sources of uncertainties 
associated with this technique: 

• Uncertainties from the robot itself: the structural 
compliance of the links, joints and drive components 
of the robot results in the oscillatory behaviour of the 
robot link motion and the driving torque profile.  Prep
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• Uncertainties from the sensors: sensitivity to the 
environment change such as temperature and 
humidity, the circuit noise, the locating error of the 
sensors, and etc.  

• Uncertainties from data processing system – the type-
2 TSK filtering algorithm, because of need of 
identification of the spreading parameters. 

 
IV. CONCLUSION 

 
 This paper proposes a type-2 TSK fuzzy logic filter, 
which can be used to treat acceleration measurement data for 
the purpose of obtaining the rigid-body dynamical parameters 
of robotic manipulators. Experimental results show that this 
filter not only provides good prediction of the rigid-body 
dynamics of robotic manipulators, but also can assesses the 
uncertainties associated with the modelling process and the 
outcome of the model itself. Since the dynamics of industrial 
robotic manipulators is space and time dependent, an adaptive 
type-2 fuzzy logic filter needs to be developed in order to cope 
with this situation. 
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