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Abstract

This paper presents a robust online multiple object tracking (MOT) approach
based on multiple features. Our approach is able to handle MOT problems,
like long-term and heavy occlusions and close similarity between target ap-
pearance models. The proposed MOT algorithm is based on the concept of
multi-feature fusion. It selects the best position of the tracked target by using
a robust appearance model representation. The appearance model of a tar-
get is built with a color model, a sparse appearance model, a motion model
and a spatial information model. In order to select the optimal candidate
(detection response) of the target, we calculate a linear affinity function that
integrates similarity scores coming from each feature. In our MOT system,
we formulate the problem as a data association problem between a set of de-
tections and a set of targets according to their joint probability values. The
proposed method has been evaluated on public video sequences. Compared
with the state-of-the-art, we demonstrate that our MOT framework achieves
competitive results and is capable of handling several challenging problems.
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1. Introduction1

Multiple object tracking (MOT) is used for many computer vision appli-2

cations, such as robotics, video surveillance and activity recognition. Despite3

a steady increase in research focusing on MOT systems, it is still a challeng-4

ing unsolved problem. Tracking an object is the task of predicting the target5

path during its presence in the field of view of a camera while multiple object6

tracking is the task of tracking a target and separating it from other similar7

objects to be tracked.8

In order to perform the MOT task, several problems have to be addressed.9

In the recent years, MOT operates on detection responses coming from an10

object detector, typically a person detector. While this approach is less11

flexible than MOT based on background subtraction, it has the advantage12

of avoiding to have to deal with the fragmentation problem. The focus is13

thus more on the data association problem. Still many problems have to be14

solved.15

One of the MOT problems comes from false detection responses where16

the target is not detected at all times (see figure 1 (a)-(c)). It depends on17

the quality of the technique used to extract detection responses. Another18

problem is related to occlusion. In crowded environments, we can find oc-19

clusion between similar targets (for example two persons), occlusion between20

a target and a fix object (for example an object from the background) and21

total occlusion where the target is totally invisible (see figure 1 (d)-(f)). In22

addition, the similarity of the appearance model of the targets can present23

a big challenge for MOT. Targets can have similar appearance, have similar24

movement and have the same size (see figure 1(a) person in green bounding25

box and person in yellow bounding box). The last MOT problem comes from26

the unknown number of targets, that is, the number of targets can change27

widely over time. A robust MOT is a tracking approach that can better28

handle the problems stated above by improving the detection responses, the29

appearance model of the target and the data association between targets and30

detection responses.31

In this paper, we propose an online multi-object tracking in a multi-32

feature framework that addresses the aforementioned difficulties. MOT al-33

gorithms can be classified into two categories: online (or streaming) MOT34

and offline (or batch) MOT. Offline MOT uses information from past and35

future frames to predict the current position of targets while online MOT36

only uses information from past frames. Our proposed approach is an online37
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Figure 1: Typical situations showing MOT problems: (a),(b),(c) Occlusions indicated by
the red arrow, and (d),(e),(f) False alarm and poorly localized detections indicated also
by red arrows

MOT. We address the tracking of people using a person detector. How-38

ever, our method can be applied to any pre-trained detector outputs. Our39

algorithm capitalizes on the strength of using multiple cues to build the ap-40

pearance model of the target. This work demonstrates that an efficient way41

to ameliorate the performance of a MOT system is to use a robust target rep-42

resentation in addition to a good data association technique. This is justified43

by the fact that appearance modeling is a crucial component for associating44

targets and detections because the observation model can be highly dynamic45

and the complex interactions between similar targets may cause ambiguities.46

A MOT process relies on two main components: the target appearance47

model and the data association strategy to select the best candidate for48

each target. These components are not trivial to design because it necessi-49

tates answers to many questions: How to decide what is the best candidate?50

When should we interpret a target as being occluded? Is the target partially51

or totally invisible? This requires an efficient representation of the target52

model, which is a priori unknown. The contributions of our work relate53

to both aspects: the appearance model of the target and the data associa-54

tion strategy. For the target representation, the appearance model is built55

using multiple cues coming from independent and complementary features:56

color histogram, motion histogram, sparse model and spatial information.57

A robust target representation is obtained that allows distinguishing targets58
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from each other. Regarding the data association strategy, we adopted the59

Hungarian algorithm to associate detection responses with the set of targets60

frame-per-frame. Furthermore, to handle particular cases (like occlusion be-61

tween targets, unknown number of the targets, etc.), we filter the associations62

(delete incorrect associations and add new associations) between the list of63

targets and the list of detection responses according to their state (occluded,64

active or hypothesized target). This way, we can manage the data association65

in order to select the best candidate (detection response) for the appropriate66

target. The main contributions of this paper are:67

1. a novel MOT method that combines the strengths of many success-68

ful appearance models, namely sparse appearance model and locality69

sensitive histograms;70

2. a data association between targets and candidates that is scored by71

an affinity function that fuses multiple cues coming from independent72

features;73

3. an interpolation process for the target position that is based on spatial74

information. Thus, a target can be tracked even it is not detected or75

it is invisible for some time. The online interpolation of the position of76

the lost target is based on the history of movement of the target;77

4. experimental results demonstrating that the proposed approach is ap-78

plicable to a variety of tracking scenarios and that our approach out-79

performs several recent MOT approaches.80

The rest of the paper is organized as follows. Section 2 reviews the state-81

of-the-art approach for MOT. Section 3 describes in detail the proposed ap-82

proach. In section 4, we present experimental results for our MOT algorithm.83

Section 5 provides the main conclusions of our work.84

2. Related works85

As discussed previously, a MOT system can be improved either by improv-86

ing the detection responses, the data association strategy or the appearance87

model of the target. Progress has been done recently on all these aspects.88

Detection responses. To avoid the problems related to background89

subtraction (cluttered background, dynamic backgrounds, etc.), many90
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works use an object detector outputs for their MOT system. In fact,91

if the task is to track one kind of object (like human, cars, etc.), it is92

more suitable to use an object detector, as the problem of object frag-93

mentation is avoided. Some recent works use model-free single object94

trackers with an object detector to ameliorate the detection response95

outputs. In [1], authors use a particle filter tracker combined with a96

vote-based confidence map of an object detector. They use the detec-97

tor as a confidence score. Breitenstein et al. [2] follow a tracking by98

detection approach for their MOT algorithm. The authors use particle99

filter outputs along with person detector outputs to handle occlusions100

and missing detections. The object detector is used in two ways: as101

a confidence score term through probabilistic votes for matching (ISM102

detectors) and to locate the targets (HOG detector). In a similar spirit,103

authors in [3] exploit a MOT framework based on combining tracking104

and detection. The tracker and the object detector are used as two105

independent identities and their outputs are integrated in the data as-106

sociation phase. In contrast to other tracking-by-detection approaches,107

this approach [3] works on results of both an object detector and mul-108

tiple basic trackers. In [4], authors develop a MOT algorithm that uses109

object detection to supervise single object trackers. A Bayesian filter-110

ing based single object tracker is applied to every frame to predict the111

current position of the target. A human detector with high precision112

is associate with a person tracker based on their similarity score. The113

similarity score is calculated by combining multiple cues (color, shape,114

and texture) to build the observation models. However, the cues are115

human specific and focus on the upper part of the human body (face116

and torso). To get optimal maximizing assignments, authors use the117

Hungarian algorithm. If a detection is assigned to an existing trajec-118

tory, this detection will be used to update the corresponding trajectory.119

Else, a new trajectory will be initialized.120

Data Association. In MOT systems, an additional challenge arises:121

it is the data association. In fact, it is the answer for the question122

of which detection should be assign to which target. Each detection123

response must be assigned to a target or discarded as a false alarm or124

added as a new target. In general, classical data association approaches125

are used like the Joint Probabilistic Data Association Filter (JPDAF)126

[5] and Multiple Hypotheses Tracking (MHT) [6]. They jointly con-127
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sider all possible associations between targets and detection responses.128

Alternatively, the Hungarian algorithm [7] [4] and the greedy search al-129

gorithm can be used to recursively select the best assignment between130

a set of targets and the set of detections. More recently, tracking by131

tracklets approaches were exploited [8] [9] [10] [11]. This technique re-132

frames data association process as a set of local trajectory fragments.133

For example, in [12], the authors propose a Latent Data Association134

approach where each detection is considered as its own target. So, the135

data association is re-formulated as a single Switching Linear Dynam-136

ical System (SLDS), i.e. linking these single detections (single targets)137

into longer trajectories. Yang et al. [11] introduced an online learning138

approach with a CRF model for tracking by tracklets approach. They139

add discriminative features to differentiate corresponding pairs of local140

tracklets. The CRF model is learned in each sliding window repeatedly.141

Each tracklet should be associated with one and only one tracklet. In142

other work done by Huang et al. [13], the data association between lo-143

cal tracklets is done in a hierarchical framework on three levels. In the144

first level, only single detection responses are matched. In the second145

level, short tracklets are combined to form longer tracklets. At the high146

level, occluded tracklets are re-assigned to handle the occlusion prob-147

lem. In [10], authors proposed a MOT system by linking tracklets into148

long trajectories by finding a joint optimal assignment between global149

information (linking tracklets) and local information (linking detection150

responses). Trajectories are updated iteratively until convergence.151

The work of [14] also exploit the notion of tracklets to achieve the data152

association step. They incorporate the benefit of person recognition153

to associate local tracklets. In fact, tracklets are classified into two154

categories: query tracklets and gallery tracklets. First of all, tracklets155

are generated by matching short trajectories of the targets (linking156

detection responses between two consecutives frames). After that, the157

tracklets are classified. A gallery tracklet is a tracklet which is longer158

than a threshold and is not covered by any other tracklet. In fact, the159

more a trajectory is long the more it is reliable. A query tracklet is a160

tracklet who is missing some feature of the target. The association of161

tracklets is based on three similarity scores: the motion, the time (as162

a step function) and the appearance where the motion cue is defined163

based on time gap between tracklets (the tail of the first tracklet and164
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the head of the second one), the geometric position and the velocities165

of the tracklet.166

Another work is proposed in [15] in which the data association is167

achieved in different levels: global data association (matching between168

trajectory), tensor approximation representation via a power iteration169

solution, optimization framework using context information (motion170

information). The data association step models the interaction energy171

between multiples and individual trajectories in an optimization frame-172

work using contextual information until convergence. The contextual173

information is based on two kind of motion descriptors. First, the low-174

level motion context (specific motion context) is generated based on the175

non-maximum suppression strategy (NMS). By estimating the motion176

consistency value (using the orientation similarity and the speed simi-177

larity between any two associated trajectories), the interaction between178

a pair of association is modeled. Second, the high-level motion context179

which is divided into two types: the motion interaction between asso-180

ciation and tracklet (based on the average motion interaction between181

an association and neighboring tracklets) and the motion interaction182

between two associations (based on the temporal average of motion sim-183

ilarities between a pair of associations). The calculation of the low-level184

and the high-level motion context used the spatial displacement veloc-185

ity vector (defined by the difference between spatial position). Their186

approach is similar to tracking by tracklets. The only difference is187

that the data association is done only between two tracklets in a short188

term (neighboring tracklets). So, it will have difficulty in handling the189

variation of the number of targets (exit and entry target).190

In Fabio et al. work [16], a generic MOT method is proposed that is191

performed directly on confidence map. The confidence map is a repre-192

sentation of likely detection locations. In fact, a modified particle filter193

algorithm is applied on the confidence map. Besides the geometric po-194

sition, the velocity and the intensity of the target, a target identity is195

integrated in the particle state. The ID state allows the approach to196

deal with unknown number of targets. The IDs assignment is performed197

using a Mean-Shift clustering supported by a GMM to obtain a robust198

matching of target identities within each cluster. To handle the ID mix-199

ing (specially in case of close targets), the ambiguity between targets200

IDs is resolved using an MRF (a Markov Random Field) of target birth201
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and target death. Different to other approaches, the data association in202

[17] step is formulated into a minimisation problem. In fact, an energy203

function is estimated for each trajectory of targets. Then this energy204

function should be minimised to obtain a long trajectory (by linking205

smaller ones). Initially, authors use a Kalman Filter tracker to obtain206

initial trackers and then a greedy search based data association is ap-207

plied to obtain initial trajectories. Thereafter, the minimization of the208

energy function is solved by executed different moving jump namely209

growing and shrinking of trajectories by adding some target location210

on the current trajectory or by weeding out incorrect targets from tra-211

jectories, merging (if the energy function of two paths is lower than the212

energy function of each one separately) and splitting (split a path in213

two smaller paths if the energy function of each path is lower than the214

original one), adding (if a detection is not assigned to an existing path,215

a new path should be created) and removing (a path is full deleted if216

its minimum energy function is above a threshold). The assignment217

step is not described in the paper but it is done indirectly using the218

appearance model and occlusion reasoning.219

Appearance model. The appearance model of a target is the repre-220

sentation used to describe a region of interest. The appearance model221

can be based on target shape, color [18], motion properties [11] [19]222

and geometric properties [20]. Furthermore, the appearance model can223

be based on multiple features combined together. For example, in [21],224

for single object tracking, the appearance model is build using colour225

histogram and orientation histogram in a particle filter framework. In226

[20], the authors proposed a MOT algorithm dedicated to sport video227

sequences. The player appearance model is defined by a statistical and228

dynamical model (the position, the scale, the velocity and the opti-229

cal flow). In Possegger et al. [22], they exploit geometric properties230

to create the appearance model of the target to handle the occlusion231

problems. They integrate the spatio-temporal evolution of occlusion232

regions, motion prediction and object detector reliability. Their work233

proved that geometric properties can help to handle occlusion between234

targets. In [8], the authors use three independent features to model235

each target which are color histograms, covariance matrices and his-236

tograms of gradients (HOG).237

In [4], authors use multi-cues to build the appearance model but in a238
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different manner. The model is highly specialized. Different appear-239

ance models are used to represent a particular part of the human body.240

The kernel-weighted color histogram is calculated for the head and the241

upper of torso region. The histogram consists of 8 bins for each color242

canal (R, G or B). To be robust to occlusions, two histograms are used243

to compare the dissimilarity: the first one is the last histogram of the244

target and the second one is the mean histogram of the target (created245

based on the average of the few latest histograms). The Bhattacharyya246

coefficient is applied to compare histograms. Besides, the head region247

is represented by an elliptical model. The intensity gradients vectors248

and the gradients are estimated for the ellipse (K= 36 normal vectors).249

The dissimilarity is then based on calculating the angle θk between the250

largest gradient and the k-th normal vector as:251

1−
1

K

K
∑

k=1

|cos(θk))| (1)

The last feature is a bag of local features that is extract on the upper252

part of torso region to capture the textural characteristics of this part.253

The features used are fast dense SIFT-like features on each grid (defined254

by 4× 4 pixels). A local features based histogram is estimated on 256255

clusters for each region. As the color histogram, the Bhattacharyya256

coefficient is used to measure the difference between histograms. Then a257

dissimilarity function is calculated as a linear and weighted combination258

of the dissimilarity functions of each cue. Although the appearance259

model is specific for each part of the upper region of the human body,260

it is difficult to build it. Indeed, the extraction of the head region and261

the upper part of the torso requires advanced strategies. This explain262

the fact that authors use a multi-view human head detector based on263

CNN (Convolutional Neural Network). However, it is not obvious to264

obtain the head region of the target (for example, in the case that the265

head of the person is occluded but the rest of the body of the person is266

visible in the video sequence) because this part of body is very likely to267

be occluded because it is small compared to the rest of the body. This268

MOT approach can be applied only for human tracking and for some269

special datasets. In contrast, the approach that we are proposing aims270

at describing the complete region of the object for better robustness271

to occlusion. Furthermore, we aim at proposing an appearance model272
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that can be applied to a variety of objects.273

Authors in [14] uses multiple cues to learn the appearance model. The274

used cues are the colour (RGB color histogram with 8 bins for each275

color canal), shape (HOG histogram) and texture (covariance matri-276

ces). A single descriptor is calculated for each support region via one277

feature. In fact, the person image is divided into a set of rectangles278

(654) respecting the constraints of the width and height ratio. So, the279

appearance descriptors are generated for each person image patches to280

calculate the similarity between targets. To compare the histograms,281

belonging to targets, the correlation coefficient is used. The final simi-282

larity function is a linear combination of each similarity measurement283

for each descriptor (where each descriptor has a weight which reflects284

its importance). Those descriptors are then trained using the standard285

Adaboost algorithm to sequentially select the best descriptor (the de-286

scriptor which gives the best comparison of the similarity). Indeed,287

the training data are collected by using the ground-truth of a dataset.288

A positive sample is defined by a pair of sample images belonging to289

the target and a negative sample is defined by a pair of sample images290

belonging to different targets. The similarity scores for positives and291

negatives samples are integrated into a standard Adaboost algorithm292

to learn the pool of features for different regions. According to [14], the293

color histogram descriptor on smaller regions is the most often selected294

while the covariance matrices are the least selected. The learning of the295

best descriptors is a kind of off-line learning. Thereby, the appearance296

model of the target requires prior knowledge of the structure of the297

target model.298

The notion of multi-cues has a different use in the work of [23]. This299

work is based on fragTrack algorithm where each part of the objects is300

modeled separately. Each object fragment is represented by a cue. So,301

a multi-cue based approach is used to model multiple fragments for the302

object.303

In [17], authors propose an energy function (or cost function) that of-304

fers a more complete representation of the target. In fact, authors give305

a robust representation for the target trajectory instead of representing306

directly the target. The energy function is calculated using: data term307

which allows to keep the trajectories close to the observations (obtained308

by estimated the localisation of the target relative to the detection lo-309
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calisation using an isotropic shaped function), dynamic term (a target310

motion constraint estimated by a constant velocity model), mutual ex-311

clusion term to avoid the case in which two targets come too close to312

each other (a penalty function is calculated based on the targets’s vol-313

ume intersections), trajectory persistence term (help to avoiding track314

fragmentation or abrupt track termination problems by using a sigmoid315

centered on the border of the tracking region) and a regularizing term316

to prevent the number of targets from growing (is calculated using the317

length of a trajectory and the number of targets). Besides those terms,318

the appearance model of the target is also added to calculate the en-319

ergy function. An RGB color histogram with 16 bins is estimated on320

the Gaussian weighted region of the detection (to favor center pixels321

and delete the pixels along region borders). The construction of the322

appearance model of the trajectories requires the intrinsic and extrinsic323

camera parameters. In fact, besides the image coordinates, the target324

is defined by its real world coordinates.325

The motion feature is widely used to build the appearance model. In326

[24], the motion model is the motion relation between two targets calcu-327

lated using the position and the velocity difference. In other word, the328

relative motion model is a set of linked edges between different objects329

(including self-motion model for an object). To estimate the similarity330

score, a posterior probability is calculated bases on the relative motion331

models and their weights (calculated using event probabilities and ob-332

servations). It is estimated with a Bayesian filter. Besides the relative333

motion models, the data association is achieved using the size similar-334

ity (ratio of the difference between the width and the height) and the335

appearance similarity (color histogram).336

The approaches described above improve tracking performance in different337

ways, but can be quite complex because of using an object tracker (for track-338

ing by using a model-free visual tracker) and a graph structure. In this work,339

we argue that creating a robust appearance model should be first addressed.340

In fact, for the data association step, the appearance model is used as input341

to estimate the affinity function for each target to be tracked. Also, to be342

robust to appearance model changes (like illumination and scale change), an343

update of the appearance model should be achieved.344

By taking inspiration from previous work, we aim to improve MOT based345

on the three aspects described above. First, we follow a tracking by detec-346
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tion strategy. Secondly, we build a robust appearance model that combines347

intrinsic properties (color histogram and sparse representation) and motion348

properties (optical flow and geometric position). Finally, for simplicity, the349

optimal single-frame assignment is obtained by the Hungarian algorithm. A350

filtering step is done to handle association problems (the loss of the target,351

reappearance of the target, the exiting of the target and the entering of a new352

target in the scene) by deleting or adding some associations. For the false353

alarm detection, we can use the motion appearance model to interpolate the354

lost position of such target. After improving the appearance model, a target355

management step is achieved to alleviate the inter-occlusion (occlusion of356

targets with a fixed object in the scene) and intra-occlusion (occlusion of the357

current target with other targets) problem.358

3. Proposed method359

3.1. Motivation and overview360

Our MOT method has the four steps outlined in figure 2. An object to be361

tracked is an ROI (region of interest) defined by a bounding box (rectangle)362

inside a frame. The set of target features is initialized with the features esti-363

mated on the detection responses in the first frame. The detection responses364

are found in each frame with a pre-trained person detector. In order to de-365

crease the number of false detections, we filter the set of detection responses366

by removing those with inappropriate sizes or with lower classification con-367

fidence values. A set of a known number of tracks is initially built in which368

each target is defined by a state (see section 3.3.3) and a set of features.369

The set of targets will be updated dynamically to reflect appearance model370

changes and to handle MOT problems (as discuss in section 1). In addition371

to a color and a sparse representation model of the target, we also propose372

a motion model that includes optical flow feature and spatial feature. The373

motion model allows us to avoid false associations (or assignments) between374

targets and detection responses. For each frame, an affinity function is cal-375

culated which reflects the similarity between a target and a set of current376

candidates (a candidate is a detection response) based on their appearance377

model. More specifically, the appearance model of a target is defined by four378

features:379

1. A color histogram Hc is used to encode the color information of the380

target. The Euclidean distance between histograms is used to evaluate381

the color similarity between targets and candidates.382
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Figure 2: Method overview

2. A sparse representation error p reflects the projection error of the can-383

didate in a template space of the target. In fact, each candidate is384

sparsely and linearly projected into target templates, which are lin-385

early generated from the last bounding box of the target.386

3. A histogram of oriented optical flow Hm is used to encode the motion387

properties of the target.388

4. The spatial consistency ~d reflects the geometric correlation between389

target and the list of candidates in term of Euclidean distance between390

the target center point and the center point for each candidate.391

The data association is a crucial task in our MOT framework. It is the392

task of associating existing targets (or trajectories) to different candidates393

(detection responses). Instead of doing the association in one step, the data394

association will be achieved in two steps or at two levels. In fact, we have395

two principal categories for the state of a target: occluded or active (visible).396

Active targets are matched in priority before occluded targets because we397

cannot know if an occluded target will be visible at that time or not. Data398

association of occluded targets is more uncertain. Therefore, fully visible399
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targets will be assigned first. In other words, the data association is done in400

two hierarchical levels: active level and occluded level. All visible targets are401

assigned at the active level with all detection responses and the rest (occluded402

targets) are assigned at the occluded level with the not yet assigned set of403

detection responses later on. Then, all valid assignments between targets and404

detections are combined to achieve the global data association step. A global405

assignment matrix is then obtained. The assignment matrix is composed of406

1 or 0 values: 0 if the assignment is not valid (a target is not matched with407

a detection) and 1 if the assignment is valid (a target is matched with a408

detection response). To handle occlusion problems, the assignment matrix409

should be filtered which means that if an assignment is not reliable, it should410

be deleted and if an assignment is reliable, it should be kept. This is achieved411

by creating a state for each target. Then, based on the state of the targets412

and the similarity score value, an assignment can be deleted or added. Data413

association is achieved by applying the Hungarian algorithm [22].414

3.2. Multi-features based model415

A target is represented by four independent descriptors that reflect the in-416

trinsic properties (color and sparse appearance model) and the motion prop-417

erties (optical flow and spatial feature). Each feature describes an object418

by considering different properties. In fact, the color reflects the distribu-419

tion of the intensity value of the object, the sparse model reflects the linear420

combination of the intensity of the object into other intensity templates, the421

optical flow is the differential of the intensity values for the object and finally422

the spatial feature reflects the geometric characteristics. Although the color,423

sparse and the optical flow features are based on the color characteristics for424

their computation, we still consider them independent because they measure425

different properties of color (respectively, the color distribution, the orga-426

nization of the color in a template, and color differential). Also, they are427

independent in the term of their decision. For example, if two objects have428

similar color feature, they will not necessary have similar motion feature or429

be sparsely projected with the same templates.430

These descriptors are used together to define the similarity of the appear-431

ance model. Thus, we obtain a powerful discrimination of all tracked targets.432

We build a global appearance model F t at each time t433

F t = [Hc, p, Hm,~d] (2)
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where Hc is the concatenation of locality sensitive histograms at each pixel,434

p is the probability error of the sparse projection, Hm is the oriented optical435

flow histogram and ~d is the vector of Euclidean distances between target and436

candidate center points.437

3.2.1. Color appearance model438

The color histogram is built at each pixel location of the bounding box439

of the target. We use a recent approach of histogram representation called440

locality sensitive histogram (LSH) [25]. As defined, the LSH is a set of local441

histograms at each pixel location. For object tracking application, target pix-442

els inside a local neighborhood should not have an equal contribution. Pixels443

further away from the center should be weighted less than pixels closer to444

the target center. The LSH is the sum of weighted intensity values around445

a neighborhood region. Mathematically, let HE
px the locality sensitive his-446

togram at pixel px inside a neighborhood region E:447

HE
px =

px
∑

q=1

α|px−q|.Q(Iq, b), b = 1, · · · , B, (3)

Where α ∈ [0, 1] is a parameter controlling the weight of pixel and Q(Iq, b) is448

equal to zero except when intensity value Iq belongs to bin b. The LSH can449

be calculated based on the contribution of pixels from the left side (pixels on450

the left of pixel px) and the right side (pixels on the right of pixel px ). So,451

the LSH can be written as:452

HE
px(b) = HE,left

px (b) +HE,right
px (b)−Q(Ipx, b), (4)

Where:453

HE,left
px (b) = Q(Ipx, b) + α.HE,left

px−1 (b), (5)
454

HE,rigth
px (b) = Q(Ipx, b) + α.HE,rigth

px+1 (b), (6)

Pixels from the right side do not contribute to calculate HE,left
px and pixels455

from the left side do note contribute to calculate HE,rigth
px . The LSH is then456

normalized at each pixel location. The normalization factor npx at pixel px457

is:458

npx =

px
∑

q=1

α|px−q| (7)
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The distance between two locality sensitive histograms can be computed as:459

D(Ht, Hc) =
B
∑

b=1

(|Ht(b)−Hc(b)|), (8)

Where Ht is the target histogram and Hc is the candidate histogram.460

3.2.2. Sparse representation model461

Sparse appearance models have attracted a lot of attention in recent years.462

We adopted and modified the sparse representation technique developed in463

[26] to fit into our MOT framework. The sparse representation model aims at464

calculating the projection errors of the candidate model into the dictionary465

of target templates. The candidate is represented as a linear combination of466

the template set of the target. A target template dictionary is constructed467

by a set of templates generated by doing small translations around the tar-468

get bounding box. There are two types of templates: main target templates469

and trivial templates (containing trivial pixels such as pixels from the back-470

ground). A good target candidate is a candidate that can be efficiently471

represented by only the target templates, while, a bad target candidate is472

represented by a dense representation (represented by the use of many triv-473

ial templates), which reflects the dissimilarity to target template. In our474

sparse representation model, we sparsely projected the detection responses475

in a template space of the target. A vector of approximate errors of the476

sparse representation projections is then obtained. It reflects the similar-477

ity between the target sparse model and the candidate (detection response)478

model. Given the set of n target templates T = {t1, t2, ..., tn} ∈ R
d×n, a479

candidate y is linearly projected into the target templates:480

y = ~aT = a1t1 + a2t2 + ...+ antn, (9)

Where ~a = (a1, a2, ..., an)
′

∈ R
n is the coefficient vector. To incorporate481

the effect of occlusion and noise on the target model, each candidate is rep-482

resented by trivial templates in addition to the target templates. Trivial483

template is a matrix of zeros in which each row has only one nonzero entry.484

Then, equation (8) can be rewritten as:485

y = ~aT + ~eI, (10)

Where I = {i1, i2, ..., id} ∈ R
d×d is a set of d trivial templates and ~e =486

(e1, e2, ..., ed)
′

∈ R
d is the trivial coefficient vector. Note that the number of487
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trivial templates is much larger than the number of target templates (d >> n)488

In sparse representation model, we can say that templates are positively re-489

lated to the target depending to the sign of the coefficient in the vector ~e. So,490

the nonnegativity constraint is taken into consideration by adding two kinds491

of trivial templates: negative and positive trivial templates. Consequently,492

equation (9) is rewritten as:493

y = ~cB, (11)

Where B = [T, I,−I] ∈ R
d×(n+2d) and ~c = [a, e+, e−]

′

∈ R
(n+2d).494

Each candidate is then sparsely represented according to equation (10).495

The similarity between a target x and a candidate y is transform to a l1496

minimization problem :497

min ‖Bc− yi‖
2
2 + λ ‖c‖1 ; s.t. c > 0 (12)

Where ||.||2 and ||.||1 denote the l2 and the l1 norm used to solve the498

minimization problem and λ is a factor. The likelihood probability p(yi|xt)499

between candidate sparse model yi and target sparse model xt at time t is500

then :501

p(yi|xt) =
1

τ
exp[−α ‖yi − cT‖22], (13)

Where c is the solution of equation (11), α is a constant, and τ is a nor-502

malization factor. A good candidate is a candidate that is approximated503

with small coefficients for the trivial templates and a bad candidate is a can-504

didate for which the vector of coefficients is densely populated and the main505

approximation is done with trivial templates. The candidate with smallest506

projection error will have higher likelihood probability. An updating step for507

the target model is necessary to take into account local variation of the model508

(illumination, scale and pose changes). This is done by updating the tem-509

plate space according to the new bounding box of the target. If the tracking510

result is good, then a new set of template space will be generated from the511

target bounding box.512

3.2.3. Motion appearance model513

We propose to represent each target by its motion feature. We use the514

optical flow [27] to calculate this feature. To obtain the motion descriptor, we515

calculate the histogram of oriented optical flow (HOOF) [28]. First of all, the516

optical flow is calculated for each target bounding box. The calculation of the517
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optical flow vector is done by solving a differential equation that describes518

the differential of intensity values at each pixel. So an optical flow vector519

~v = [vx, vy] is obtained on each dimension (row and column). Then, each520

vector is binned according to its primary angle θ = tan1( vy
vx
) and weighted521

according to its magnitude
√

v2x + v2y . The histogram of oriented optical522

flow is then normalized to be robust to scale variations. To use the HOOF523

histogram for computing candidates and target similarity, we compare the524

HOOF histograms with the following equation:525

D(Hm
t , Hm

c ) =
B
∑

b=1

(|Hm
t (b)−Hm

c (b)|), (14)

Where Hm
t is the target motion histogram and Hm

c is the candidate motion526

histogram.527

3.2.4. Spatial model528

The spatial information of a target enhances the study of the correlation529

of targets position over time. The spatial constraint is used in two steps530

of our algorithm: features extraction and data association steps to allow531

exploring the spatial relationships of a target with each candidate. The532

spatial information is used to avoid incorrect assignment with a far candidate533

and to observe the dynamic of each target. We encode the spatial information534

as geometric coordinates (ix, iy, w, h) of a target over time where (ix, iy) are535

the coordinate of the target, (w, h) are the width and the height of the target.536

The spatial similarity likelihood ~d is then the vector of Euclidean distances537

between center points of target and candidates:538

di(j) =
√

(ix − jx)2 + (iy − jy)2, (15)

where (ix, iy) and (jx, jy) are the center coordinates of a target i and a can-539

didate j respectively. Note that the spatial proximity is taken into account540

in the estimation of target and candidates similarity only in the case where541

there is no occlusion (the target is visible).542

3.3. Data Association543

The MOT problem is formulated as a data association problem. The data544

association is the step for finding the answer to the question: which detection545

should be assigned to which target. This step aims at matching the set of546
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targets with the set of current candidates in order to define the current547

bounding box (the current position) of each target. The matching is done548

based on an affinity matrix (see section 3.3.2). Note that one target should549

be assigned to one and only one detection response. We follow a hierarchical550

matching process: step 1, matching only visible targets and step 2, matching551

only occluded targets (see algorithm 1). In order to handle occlusion and552

update the set of targets (adding new targets or deleting existing targets), a553

management step is done after the global data association.554

3.3.1. Affinity function555

To obtain a global similarity value, features are fused according to their556

weight. The global similarity map is thus created at time t to represent the557

target similarity considering all the features. Let X t = {xt
1, x

t
2, ..., x

t
n} be the558

set of all tracked targets at time t and Y t = {yt1, y
t
2, ..., y

t
m} be the set of all559

detection responses at time t. The associated feature set S = [s1, s2, s3, s4]560

combines affinity function measures from the different features, that is the561

color histogram, the sparse feature, the optical flow feature and the spatial562

feature. More precisely:563

s1 is the difference between color histograms (LSH) for each object564

(target and detection).565

s2 is the probability of the error of the sparse linear projection for the566

target model into the detection response templates.567

s3 is the difference between HOOF histograms (optical flow based his-568

togram) for each object (target and detection).569

s4 is the spatial difference between the target position and the detection570

position in term of Euclidian distance.571

The affinity function at frame t is then written as:572

ft(x
t
i, y

t
j) =

∑

k

αksk(x
t
i, y

t
j), (16)

where αk denotes a weight for each feature and sk represents the affinity573

function using the feature number k between the target state xt
i and the574

detection response ytj. The weights αk reflect the contribution of each feature575

to determine the similarity between targets and detection responses. They576
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Algorithm 1 Data association algorithm

- Compute the affinity function ft(x
t
i, y

t
j) for active targets and candidates

- Compute the assignment matrix by applying the Hungarian algorithm
for all valid assignments do
if ft(x

t
i, y

t
j) > threshold then

- Delete assignment
end if

end for

- Compute the affinity function ft(x
t
i, y

t
j) for occluded targets and unas-

signed candidates
- Compute the assignment matrix by applying the Hungarian algorithm
for all valid assignments do
if ft(x

t
i, y

t
j) > threshold then

- Delete assignment
end if

end for

if active target is not assigned then

- target is set as occluded
end if

if occluded target is assigned then

- target is set as active
end if

if candidate is not assigned and candidate is not in the in/out region then

- candidate is set as hypothesized
end if

if candidate is not assigned and candidate is in the in/out region then

- candidate is set as entering
end if

if candidate is not assigned and candidate stays is in the in/out region for
more than f frames then
- candidate is set as exiting

end if
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Figure 3: Targets Assignments

were calculated experimentally and are constant for all the tested videos.577

They are: 0.4 for color feature, 0.3 for sparse model feature, 0.1 for the578

optical flow feature and 0.2 for the geometric feature.579

3.3.2. Hungarian algorithm580

The optimal frame-by-frame assignment is achieved by using the Hun-581

garian algorithm. The Hungarian algorithm finds the assignments that max-582

imize the affinity function. First, an affinity matrix At at time t for each583

pair (xt
i, y

t
j) is computed. ft(x

t
i, y

t
j) is the value in row number i and column584

number j. Then, the pair (x∗, y∗) with maximum score is iteratively selected585

for each row. An assignment matrix is then obtained. It contains 0 and 1586

only for the selected matching pair. Only one selected pair per row.587

3.3.3. Assignment management588

Due to the variable number of targets over time, heavy occlusion between589

tracked targets and unreliable detection responses, MOT cannot be resolved590

by only a matching task. Thus, we exploit extra processing steps to handle591

such MOT problems. The challenging task is when a target is not assigned592

or a candidate is not labeled (see figure 3).593

Target states. In addition to the geometric coordinate, the identifier594

and the set of features, a target can be defined also by its state. A595

state is used to distinguish visible targets from invisible ones, and new596

targets from exiting ones. Thus, a target can be:597

1. Active. An active target is a visible target.598

2. Occluded. An occluded target is a lost target caused by partial or599

total occlusion or false detection.600

3. Exiting. An exiting target is a target that is temporarily out from601

the field of view of the camera.602
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Figure 4: In/Out region

4. Entering. An entering target is a new target added to the set of603

current targets.604

5. Hypothesized. A hypothesized target is a candidate that is not as-605

signed. It can be a new target appearing in the middle of a frame,606

a false detection or an existing target that is already deleted.607

Entering and exiting of targets is determined based on an in/out region.608

The in/out region is selected manually along frame borders in the first609

frame (see the hatched area in figure 4). If a candidate is detected610

inside the in/out area, it will be added to the set of targets as a new611

track in the entering state. If an existing target stays in this area for612

more than a given number of frames, the target will be deleted from613

the current set of tracks and it will be marked as exiting. Therefore,614

the number of targets changes over time because of the process of birth615

of target (adding a new track) and the death of target (deletion of616

an existing track). To handle occlusion, a target can be labeled as617

occluded or active. In the case of unassigned target, this target is618

marked as occluded. An occluded target can be set as active target619

only if it is assigned with a low similarity score (its affinity function620

exceeds a threshold).621

Interpolation of lost targets Until now, the data association step622

is done between the set of detection responses and the set of current623

targets. It means that if a currently tracked target is not detected at624

time t, it will not be assigned (it will be set as occluded). To handle the625
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Figure 5: Interpolation step. First column: incomplete targets trajectories during the
occlusion. Second column: Estimation of targets movements. Third column: complete
target trajectories

problem of false detection, we propose to interpolate the lost position of626

the target. The interpolation is achieved based on the history of motion627

between two states of the target: occluded target and active target (see628

fig 5). First, the motion vector of the lost target is estimated based629

on the history of movement of the target over time. Let us consider a630

given target xt
i at time t, xt

i is occluded since tocc time and it is set as631

active at the current frame tcur. Assuming that the targets move with632

a linear constant motion, the motion vector between two consecutive633

times is:634

~dep(t1, t2) = |(~v(t1)− ~v(t2))/(t1 − t2)| , (17)

Where ~v is the coordinate vector [x, y] of the target at time t and635

t1, t2 ∈ [tocc, tcur − 1]. Then, the lost position (during the occlusion636

time) is estimated as:637

post(xi) = post−1(xi) + µdep (18)

Where µdep is the mean value of ~dep during occlusion.638

3.4. Model update639

The appearance model changes during time because of many factors: scale640

change, pose change, illumination variation, etc. Thus, an update step is641

necessary. The update is done only when a good tracking is achieved. A642

good tracking is at a time when the matching score (the affinity function)643

exceed a threshold τmaj. For the set of current targets, each feature is updated644

according to the new predicted position of the target.645

4. Experiments646

In this section, we present how our tracking framework helps to improve647

MOT performance.648
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Sequence # frames Persons Resolution

TUD-CAMPUS 71 Up to 6 640x480
TUD-CROSSING 201 Up to 8 640x480

TUD-STADTMITTE 179 Up to 8 640x480
PETS2009-S2-L1 795 Up to 10 768x576

Table 1: Video sequence details

4.1. Experimental setup649

We validated our proposed method on a variety of challenging video se-650

quences: TUD Campus, TUD Crossing, TUD Stadtmitte and PETS2009651

S2-L1 [29]. They are commonly used video sequences and they are very652

challenging for several reasons. First, they show walking pedestrians in an653

outdoor environment so lighting conditions are not controlled. Second, due654

to large field of view, people get very small when they are far from the cam-655

era making their tracking more challenging (PETS2009 video). Then, in656

TUD dataset, targets have a similar size and they walk with similar speeds.657

However, targets are frequently occluding each other (heavy inter-object oc-658

clusion) and are occluded by static objects. To obtain the detections, we659

use the detections originally provided with the videos [29]. For each detec-660

tion response, the classification confidence term is provided. Video sequence661

details are given in table 1.662

4.1.1. Evaluation metrics663

Tracking performance is evaluated with the widely used CLEAR MOT664

metrics [30]. They return an accuracy score called (MOTA) that combines665

false positive, missed targets and identity switch errors, and a precision score666

called (MOTP) that is the average distance between ground truth and pre-667

dicted target positions. In addition, the CLEARMOT metrics includes: false668

negatives (FN), false positives (FP) and the number of identity switches (ID669

Sw).670

4.1.2. Runtime671

The proposed algorithm was implemented using Matlab language on an672

Intel Core i7 PC running at 3 GHz and with a 16 GB memory. Our code was673

no optimized. The speed of the implemented system depends on two major674

factors: the number and the size of detections and targets. A comparison of675

the speed computation time is shown in table 2. Note that the results given676

in table 2 represent the mean runtime for different datasets. For less crowded677
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Method Proposed [Breintenstein, 2011] [Milan, 2014] [Yoon, 2015] [Poiesi, 2013] [Kuo, 2010]
Runtime (s/f) 6.47 0.5 1 0.2 3 0.25

Table 2: Comparison of runtime performance.

video sequence like TUD-Campus, the runtime is about 5.5(sec/frame). In678

fact, the people appear near the camera so we have detections with large679

size. For crowded video sequence PETS2009 − S2L1, the runtime is about680

7.45(sec/frame). The most time consuming part of our approach is the681

construction of the appearance model, especially the LSH histogram.682

4.1.3. The compared MOT algorithms683

We evaluate our MOT approach by a comparison to recent state-of-the-art684

algorithms. Among the compared approaches, a first category studied MOT685

with the aim of improving detection responses using model-free tracker [2]686

[29], a second category aimed to ameliorate the data association technique687

[31] [12] [32], and a third category aimed to improve the appearance model688

[33] [34] [35]. The results, when available, are obtained from the authors’689

papers.690

4.2. Experimental results691

4.2.1. overall performance692

Results are shown in table 3. In general, for all the performance metrics,693

our proposed approach outperforms other object trackers by achieving up to694

84% of MOTA. Our MOTA are often higher than in the previous results.695

On PETS2009-S2-L1, TUD-Campus and TUD-Crossing, our algorithm out-696

performs the tracking by detection method of Breitenstein et al. [2] that697

uses outputs from particle filter trackers and HOG detector. This shows that698

using a robust appearance model allows to achieve better results than using699

a model-free tracker combined with a detector. On the other hand, on TUD-700

Campus and TUD-Crossing, we perform better than Riahi et al. method701

[35] which is based on improving the appearance model. This shows that be-702

sides a robust appearance model, a good strategy for assignments should be703

integrated. Our method also outperforms the tracking system proposed by704

[36]. On TUD-Stadtmitte and PETS2009-S2-L1, we achieved better MOTA705

than Segal et al. [12] MOT algorithm which uses an advanced technique to706

solve the data association task. It is possible to observe that our MOTA is707

higher than Gustavo et al. approach [34] by around 14% even if they use708

25



Figure 6: Detection responses, result, and ground-truth, respectively for frame 174 video
TUD-CROSSING

multiple patches in their appearance model. Furthermore, we perform bet-709

ter than Yang et al. method [33] which includes background subtraction to710

handle occlusion. The MOT approach proposed in [17] tends to have more711

accuracy and precision compared to those of the compared approaches (in-712

clude our MOT algorithm). This is natural because authors use a different713

and better set of detection responses. In fact, authors use linear SVM de-714

tector based on histograms of oriented gradients (HOG) and histograms of715

relative optic flow (HOF). Besides, our approach is applied on uncalibrated716

camera videos sequence while the proposed approach of [17] uses the camera717

parameters (intrinsic and extrinsic cameras parameters) to build the appear-718

ance model. Compared with [37], despite that MOT is performed using a719

discrete-continuous optimization based data association scheme, our MOTA720

is about 67% while their MOTA is about 61% on TUD-STADTMITTE video721

sequence. In [38], Sherrah et al. proposes a part based appearance model722

which represents the head and the whole body of a person. Our approach723

outperforms this approach on PETS2009 dataset. Regarding the precision724

value (MOTP), the performance is comparable to others methods. MOTP725

is limited by the precision of the detector. In the literature various detec-726

tors are used. Some better than others. In our case, we used the detections727

provided with the datasets, which are not necessarily the best. In fact, the728

value of MOTP depends on the distance between the predict object and the729

position of the object in the ground-truth. As we can see in figure 6, the730

predicted results are correct according to the detections responses but is not731

correct compared to the ground-truth. In this case, we obtain a lower value732

of true positive which is proportional to the MOTP value.733

The results presented in table 3 emphasis the fact that the use of a ro-734

bust appearance model with a simple technique of detection or data associ-735
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ation can achieved better results. The robustness of our appearance model736

is coming from the use of sparse representation model in addition to other737

independent features.738

4.2.2. Robustness of the appearance model739

To fully evaluate the robustness of the proposed appearance model, we740

present the performance of each component. To this end, we evaluated all741

possible combinations of features on two video sequences: PETS2009-S2-L1742

and TUD-Crossing. Table 4 and table 5 show the performance for each fea-743

ture combination. When using all feature terms, the accuracy is the highest744

while the precision of the tracking remains about the same. When relying745

only on the motion feature, the MOT fails regularly, especially in the case746

of heavy and frequent occlusions (PETS2009-S2-L1). This is because the747

motion feature plays the role of distinguishing between motion directions748

of targets, not between target similarity. In fact, the motion feature can749

characterize an object and differentiate it from others objects only if it has750

a different motion appearance. In our case, we have many similar objects751

(pedestrians) who move with the same speed and in the same direction. So,752

many persons have similar motion feature. This why the motion feature is753

not as discriminative as other appearance models. It mostly allows us to754

distinguish people walking in different directions. However, in combination755

with other features, the motion direction often helps in removing assignment756

ambiguities. The false negative value is the smallest when using only color757

feature on TUD-Crossing but it is the smallest when using all features on758

PETS2009-S2-L1. This is explained by the fact that color feature can per-759

form well depending on the number of targets and the level of difficulty of the760

occlusion. It can be seen that any combination performs better than using761

only one feature, like the combination of the color and the sparse features762

gives higher accuracy than using color or sparse feature only. In addition, the763

combination of sparse and motion features gives more accuracy than sparse764

or motion feature used alone.765

4.2.3. Qualitative performance766

Figure 7 depicts an example of the results of our approach on several767

videos, namely PETS2009-S2-L1, TUD-Stadtmitte, TUD-Crossing, TUD-768

Campus. We can see that our algorithm can handle heavy occlusion between769

people in cases of crowded scenes.770
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Dataset Method MOTA MOTP FN FP IDS

TUD-CAMPUS Proposed 78.18% 69% 0% 13% 0
[Riahi, 2014] 72% 74% 25 % 2% 1

[Breitenstein, 2011] 73% 67% 26% 0.1% 2
TUD-CROSSING Proposed 78% 66% 1% 8% 7

[Riahi, 2014] 72% 76% 26% 1% 7
[Breitenstein, 2011] 84% 71% 14% 1% 2
[Andriyenko, 2011] 63% 75.5% - - -
[Pirsiavash, 2011] 63.3% 76.3% - - -

[Tang, 2014] 70.7% 77.1% - - -
[Segal, 2013] 74% 76% - - -

TUD-STADTMITTE Proposed 67% 57.26% 26% 6% 22
[Andriyenko, 2011] 60.5% 66% - - 7

[Milan, 2013] 56.2% 62% - - 15
[Segal, 2013] 63% 73% - - -
[Milan, 2014] 71% 65.5% - - 4

[Andriyenko, 2012] 61.8% 63.2% - - 4
PETS2009-S2-L1 Proposed 84% 66% 13% 2% 35

[Yang, 2009] 76% 54% - - -
[Breitenstein, 2011] 80% 56% - - -
[Andriyenko, 2011] 80% 76% - - 15
[Berclaz, 2006] 60% 66% - - -
[Fuhr, 2014] 70% - - - -
[Milan, 2014] 90% 80% - - 11
[Sherrah, 2013] 81.3% 74.4% - - -
[Bae, 2014] 80.34% 69.72% - - 3
[Bae, 2014] 83% 69.59% - - 4

Table 3: Comparison of results on TUD and PETS2009 dataset. Best method in red and
second best in blue
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Features MOTA MOTP FN FP IDS Recall Precision

All

Features
84% 66% 13% 2% 34 87% 98%

Color

Feature
76% 66% 21% 3% 34 78% 97%

Sparse

Feature
45% 66% 40% 12% 130 57% 83%

Motion

Feature
0% 65% 38% 46% 1178 37% 45%

Color +

Motion
76% 66% 18% 5% 48 81% 94%

Color +

Sparse
79% 66% 20% 1% 39 80% 99%

Sparse +

Motion
62% 66% 17% 17% 166 79% 82%

Table 4: Results evaluation on each feature component of our approach for Pets2009-S2-
L1. Best results are in red

Features MOTA MOTP FN FP IDS Recall Precision

All

Features
78% 66% 15% 2% 45 81% 97%

Color

Feature
73% 66% 13% 12% 22 85% 88%

Sparse

Feature
43% 66% 50% 5% 24 75% 91%

Motion

Feature
1% 66% 35% 42% 214 43 % 50 %

Color +

Motion
68 % 66% 17% 12% 29 80% 87%

Color +

Sparse
76% 66% 17% 5.98% 11 82% 93%

Sparse +

Motion
68% 66% 23% 7% 20 75% 91%

Table 5: Results evaluation on each feature component of our approach for TUD-
CROSSING. Best results are in red
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PETS2009-S2-L1. This video sequence contains especially challenging771

problems. First, targets are totally occluded by the traffic sign (see fig-772

ure 10, first row) which influences on their appearance model. Second,773

some targets are suddenly stopping for a long time or moving in circle.774

As we can see in the figure (see figure 10 row 1), target with id = 1775

stops for more than 100 frames. Our algorithm robustly handles the776

above problems by the increased power of our appearance model (using777

a unique fused appearance model) and our update strategy.778

TUD-Dataset. For the three videos sequences of TUD-Dataset, most779

targets have the same size, the same cloths and they walk at similar780

speeds and in parallel directions. In these cases, our approach can781

handle assignment ambiguities by the management of the data associ-782

ation. In fact, a wrong assignment between targets and candidates will783

be deleted according to the descriptors similarity.784

We present many scenarios to show how our approach is able to han-785

dle such difficult cases. To handle the problem of the missing detections,786

we follow an interpolation approach in which we can estimated the current787

position of the target even it is not detected. For example, in figure 8, the788

target (with the green bounding box) is not assigned by only applying the789

data association. But, after the interpolation step, we can observe that the790

green target is interpolated with success. In addition, our approach is able791

to keep good identity during multiple occlusions (see figure 9) and when the792

targets are much closer to each other (see figure 7 in row 4). Other scenario793

(see figure 10) shows that the identity of targets is not affected by the length794

of the occlusion. As we can see, the target with the red bounding box is suc-795

cessfully assigned during an occlusion of more than 100 frames. Finally, even796

with appearance model changes either by the scale changes (see figure 11) or797

the pose changes (see figure 12), our MOT can still identify the targets.798

4.2.4. Sensitivity to the number of false detections799

The results given in table 6 show that if we use the ground-truth as a set of800

detection responses, our method gives very high values of Clear MOT: 100%801

of accuracy and 100% of precision. Obtaining around 100% of accuracy for all802

tested datasets shows that our model is robust to MOT assignation problems803

namely similarity between target appearance model, heavy occlusion between804

targets and the birth and the death of targets. We also investigated the805

impact of different percentage of false detections on MOTA, Precision and806
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Figure 7:

Results for dataset. First row: PETS2009-S2-L1 (frames 120, 130, 140, 150
and 160), Second row: TUD-Stadtmitte (frames 5, 20, 30, 40 and 55),

Third row: TUD-Crossing (frames 1, 10, 20, 30 and 40) and Fourth row:
TUD-Campus (frames 1, 7, 18, 21 and 31)
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Figure 8: Interpolation of targets in the case of missing detections

Figure 9: Keeping identity under multiple occlusions. Tracking results in frames 25, 40
and 60

Figure 10: Keeping identity under long-term occlusion. Tracking results in frames 45,
100 and 150
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Figure 11: Keeping identity under scale changes. Tracking results in frames 22,123 and
158

Figure 12: Keeping identity under pose change. Tracking results in frames 14, 45 and 72

Recall. We use three kinds of false detections: false negative detections, false807

positive detections and inaccurate detections. All the false detections are808

added randomly in different proportion 0%, 5%, 10%, 15%, 20%, 25% and809

30%. We compare the performance of our proposed MOT with the following810

baselines:811

Baseline1: we implemented a version of our approach with no interpo-812

lation to show how the interpolation of a target can help to reduce the813

impact of false detection responses on the performance of our approach.814

Baseline2: we implemented a MOT approach which uses only the color815

feature to discriminate targets from each other. It demonstrates the816

impact of the feature fusion.817

Baseline3: we implemented a MOT approach which uses only the818

sparse representation feature to discriminate targets from each other.819

It demonstrates the impact of the feature fusion.820

The graphs of figure 13 show that our proposed algorithm is more robust821

than the baselines. In fact, our approach maintains the best performance822

while the false detections change. In term of MOTA, we achieve results823

between 100% and 62% with false detection percentage between 0% and824
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DataSets MOTA MOTP FN FP IDS Recall Precision

TUD-

CAMP
100% 100% 0% 0% 0 100% 100%

TUD-

CROSS
97% 100% 3% 0% 1 97% 100%

TUD-

STADM
100% 100% 0% 0% 0 100% 100%

PETS09-

S2-L1
99.65% 97.27% 0% 0% 5 99.6% 100%

Table 6: Evaluation results using the ground-truth detection

30% while if we use only the color feature, the MOTA is under 70% and825

it decreases to 40% with very high percentage of bad detection responses826

(30%). Regarding baseline1, the performance is best than the other baselines827

but the use of interpolation still give the best performance. The precision828

is still high when the percentage of the false detections increase. The black829

and green curves in figure 13 (sparse and color features) demonstrate that830

the color feature is more discriminative than the sparse feature. It is because831

with pedestrian video sequences, all targets are walking, so the shapes of832

the targets change often and is less reliable. All curves are decreasing. It833

means that the performance of our MOT method depends to some extent834

on the quality of the detection responses. We can see that our approach is835

less sensitive to the false detections than the baselines. In fact, our proposed836

approach has the highest MOTA and Recall value.837

5. Conclusion838

In this work, we proposed a novel and robust MOT algorithm, based on839

the combination of independent features. Our features are: color histogram840

model, sparse appearance model, optical flow histogram and spatial model.841

Feature descriptors are integrated into a data association method where all842

targets are matched with all candidates under local geometric constraints,843

and with target states that handle the occlusion, birth and death of targets844

over time. To handle the occlusion problem, we propose a hierarchical data845

association process in which all the targets are divided into two sets: oc-846

cluded and unoccluded targets. Each set is matched separately. In order to847

improve the detection responses quality, we incorporate an additional pro-848

cess in our framework, which is the interpolation of the position of the lost849
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(a) (b)

(c)

Figure 13: Results evaluation: (a) Evaluation of MOTA, (b) Evaluation of Precision, (c)
Evaluation of Recall
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target. Our main contribution is to explore the capability of an appearance850

model that fuses independent descriptors and the use of a simple and robust851

data association framework. The proposed method is compared to several852

state-of-the-art approaches, which demonstrate the benefits of our method.853

Our method is competitive on all tested videos.854
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