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Abstract—Background subtraction is often used as the first step
in video analysis and smart surveillance applications. However,
the issue of inconsistent performance across different scenarios
due to a lack of flexibility remains a serious concern. To address
this, we propose a novel non-parametric, pixel-level background
modeling approach based on word dictionaries that draws from
traditional codebooks and sample consensus approaches. In this
new approach, the importance of each background sample (or
word) is evaluated online based on their recurrence among all
local observations. This helps build smaller pixel models that
are better suited for long-term foreground detection. Combining
these models with a frame-level dictionary and local feedback
mechanisms leads us to our proposed background subtraction
method, coined “PAWCS”. Experiments on the 2012 and 2014
versions of the ChangeDetection.net dataset show that PAWCS
outperforms 26 previously tested and published methods in terms
of overall F-Measure as well as in most categories taken individ-
ually. Our results can be reproduced with a C++ implementation
available online.

Index Terms—video segmentation, word consensus, change
detection, background subtraction, video signal processing.

I. INTRODUCTION

The segmentation of foreground and background regions in
video sequences based on change detection is a fundamental,
yet challenging early vision task. Often simply called back-
ground subtraction, it has been well studied over the years.
It generally serves as a low cost, high accuracy alternative to
unconstrained binary segmentation based on spatiotemporal
feature clustering. Background subtraction is typically based
on a single hypothesis: all images of a sequence share a
common “background”, from which discrepancies are to be
considered of interest (or “foreground”). Thus, it is especially
useful in applications with static cameras, or when registration
between images is possible, as background modeling and
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foreground classification can be solved solely at the pixel
level. Furthermore, this type of segmentation requires no
prior knowledge of the foreground, making it ideal for online
surveillance applications (or more generally, in intelligent
environments).

The main challenges of background subtraction lie in adap-
tive background modeling and in the definition of “relevant
change”, i.e. deciding how discrepancies between observations
and model predictions should be classified. In nearly all
applications, the background cannot be considered timeless as
it may present noisy or dynamic elements (e.g. rippling water,
swaying trees), and its content may change over the sequence
(e.g. cars entering and leaving a parking lot). Also, while
easily detectable changes caused by illumination variations
may not be relevant to most applications, subtle changes
caused by “camouflaged” foreground objects (i.e. similar to the
background) have to be detected correctly. Classic and mod-
ern background subtraction challenges have been highlighted
in [1]–[4].

Research has previously focused on improving modeling
and classification for selected challenges individually, but
very little work has been addressing them holistically. There-
fore, most background subtraction methods require significant
application-specific tuning to achieve good segmentation re-
sults in complex scenarios. Few of them actually perform
well across many common use cases without supervision or
preprocessing. A “universal” background subtraction solution
has to:

1) learn the proper balance between sensitivity and precision
based on past observations and segmentation coherence
to make good unsupervised decisions;

2) ignore irrelevant changes in the observed scene which
concur with previously recognized patterns; and

3) determine how and when foreground objects are absorbed
in the background model, and avoid model corruption
when the background is altered.

Achieving these objectives is complicated by the nature of
most background subtraction approaches that, by design, op-
erate online at the pixel level for better efficiency. As such,
they cannot easily analyze large-scale change patterns, and
must rely on complex regularization schemes (e.g. frame-wide
energy minimization with higher order potentials) to produce
good results.

What we propose in this paper is a background subtraction
method that can be applied to a large variety of scenarios with-
out manual parameter readjustment, coined PAWCS (Pixel-
based Adaptive Word Consensus Segmenter). More specifi-
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cally, we first introduce a new persistence-based word dic-
tionary scheme for instance-based background modeling that
simultaneously addresses short-term and long-term adaptation
challenges at the pixel and frame level. Unlike traditional
codebook or sample consensus approaches, this novel non-
parametric modeling strategy allows for the online principled
learning of static and dynamic background regions at a low
memory cost. This is because it dynamically maintains the
minimal number of background samples (or words) required
for proper segmentation. Persistence estimation is used to
gauge the importance and reliability of each background word
over time based on local match counts. Persistence values then
influence the rate at which each word is updated and used for
classifications. The long-term retention of good words despite
the presence of static foreground and the rapid suppression of
irrelevant words (e.g. captured while bootstrapping) are thus
assured by design. In other words, PAWCS requires no explicit
training to populate its background models, and keeps them
up-to-date while processing new frames.

Our novel word models adopt the primary update and
maintenance principles of stochastic sample consensus models,
meaning that background words:1) do not need to be unique
inside dictionaries; 2) can be built upon local image descrip-
tors; and 3) are randomly updated in an online fashion. This
strategy diverges from the traditional codebook maintenance
strategy (i.e. [5]) as it allows words to overlap in feature
space. This also means words can be shared between pixel-
level dictionaries and can contribute to a frame-wide dictionary
without having to solve costly unicity conflicts. As discussed
in [6]–[8], spreading information between neighboring pixel
models drastically improves segmentation coherence since it
acts as a regularization step; the same is true for our method.
The use of a frame-wide (“global”) dictionary as a complement
to pixel-level (“local”) dictionaries further improves spatial
coherence, and allows the capture of large-scale background
change patterns.

Our proposed method also automatically adjusts its primary
parameters by incorporating closed-loop controllers into each
pixel-level model. That way, each background region can
exhibit its own modeling and classification behavior, which
can also evolve over the analyzed sequences. Parameter adjust-
ments are regulated by monitoring:1) segmentation noise prior
to regularization; 2) similarity between background models
and observations; 3) region instability based on recurring label
changes; and 4) the propagation of illumination updates in
local neighborhoods. These four aspects are used to guide
and/or trigger various feedback mechanisms that affect model
update rates, matching and classification thresholds. Unlike
previous methods that could also dynamically adapt to the
scene (e.g. [9], [10]), our strategy is not hindered by fore-
ground, and it does not rely on a sliding window analysis of
inputs/outputs. Instead, it relies on a causal infinite impulse
response filter and simple heuristics to quickly and efficiently
react to short-term and intermittent disturbances at the pixel
level.

We evaluate PAWCS using the 2012 and 2014 versions of
the ChangeDetection.net (CDnet) benchmark [1], [11], [12]
and compare our results with those of 21 methods listed on

its online platform as well as the self-reported results of 6
recently published methods (27 in total). Our new approach
outperforms most of them in overall performance, and in most
categories taken individually. To make its usage and future
comparisons outside this benchmark easier, we offer the full
C++ implementation of PAWCS along with its entire testing
framework online1.

Note that our method was previously introduced in [13];
here, we offer an extended description of our approach, discuss
new experiments on the 2014 CDnet dataset, and compare our
results with the new state-of-the-art.

II. RELATED WORK

Many background modeling paradigms have been intro-
duced over the years: the earliest and most popular is pixel-
level modeling, as it allows simple, scalable, high-speed imple-
mentations. This is due to the fact that this modeling strategy
relies on low-level features (e.g. color intensities, gradients) to
track background representations, as opposed to region-level
or object-level information. Two of the three best methods
listed in [11], namely PBAS [10] and ViBe+ [14], follow this
paradigm as they are both based on stochastic intensity sam-
pling [6]. Parametric approaches based on Gaussian Mixture
Models (GMM) [15] or non-parametric ones based on Kernel
Density Estimation (KDE) [16] as well as their derivatives [9],
[17] can all be considered part of this family. With a goal
similar to [9], Haines and Xiang [18] recently proposed a
Dirichlet process Gaussian mixture modeling approach that
automatically determines its optimal distribution parameters
and component count in a data-driven fashion. Their “confi-
dence capping” strategy allows background representations to
be captured and forgotten in a principled manner, much like the
“maximum negative run-length” evaluation strategy proposed
by Kim et al. [19]. In this latter work, codewords are intro-
duced, which are created by clustering reoccurring background
representations during a training phase. These codewords are
then amassed into codebooks at the pixel-level to create inde-
pendent, low-level background models. Compared to classic
non-parametric models, codebooks can accurately describe
multimodal background regions and avoid corruption due to
static foreground while having a small memory footprint. This
modeling approach was first improved in [5] to allow the
online adaptation of codebooks, then in [20] by extending
codewords to the spatiotemporal domain, and more recently
in [21] by using duration dependent hidden Markov models
to identify and capture periodic background change patterns.
Our proposed word-based modeling approach detailed in the
following section differs from traditional codebook approaches
in that it does not cluster background representations into
unique codewords during a training phase. Furthermore, it
allows words to be sorted within background models and
replaced online based on their persistence in the observed data.

Pixel-based methods are not restricted to use intensity
values for background modeling: they can also capture texture
information using local descriptors. Doing so helps produce
richer, “spatially aware” background samples that are critical

1https://github.com/plstcharles/litiv

https://github.com/plstcharles/litiv
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Fig. 1. Block diagram of the Pixel-based Adaptive Word Consensus Segmenter. Each block represent a major component detailed in Section III.

for the detection of camouflaged foreground objects. [22]–
[26] all use Local Binary Patterns (LBP) or other similar
binary features for this purpose and achieve good tolerance
to illumination variations. The works of [2], [27] have studied
the proper selection and usage of low-level features in pixel-
level background modeling.

Frame-level background modeling via Principal Compo-
nent Analysis (PCA) and low-rank/sparse decomposition ap-
proaches is a popular alternative to pixel-level modeling [28]–
[31]. These approaches are however not ideal for surveillance
applications as most rely on batch or offline processing or
suffer from scaling problems. The authors of [32] address
scaling problems by reformulating principal component anal-
ysis for 2D images, and their method achieves much lower
memory consumption and computational cost than traditional
methods. Some online approaches have also been proposed
recently [33]–[35], but they are still very computationally
expensive.

An early finding in the field is that background model-
ing should not be limited in scope to frame-wide or pixel-
independent processes [36]. Doing so would restrict their
perception of change to a single spatial scale and therefore
make it harder to address common background maintenance
challenges. Multi-scale and “hybrid” methods such as those
of [24], [36]–[38] have emerged in light of this to improve
segmentation coherence at different spatial scales. Coarse-
to-fine and block-based strategies can also be adopted to
solve this problem. For example, Staglianò et al. [39] recently
proposed a block-based modeling approach based on sparse
coding that relies on patch dictionaries learned online to
improve spatial coherence. Furthermore, features extracted
from High-Efficiency Video Coding (HEVC) macroblocks
have been used in [40] for low-cost block-based modeling
with good spatiotemporal coherence. Alternative solutions that
rely on self-organizing maps [41]–[43], neural networks [44],
[45], or probabilistic frameworks such as Markov Random
Fields [20], [46], [47] to expose relationships between inde-
pendent background models have also been studied.

A problem common to most classic methods is that they
lack flexibility: even though they can provide good results
on individual sequences when tuned properly, few of them
can actually perform equally well across large datasets when
used “out-of-the-box”. Modern methods sometimes propose
ways to dynamically control either model complexity [9], [18],
adaptation rates [48], [49] or classification thresholds [14],

[50] online. These however often rely on complex object-
level or frame-level analyses and react slowly to intermittent
changes. In the case of PBAS [10], which simultaneously con-
trols model adaptation rates and classification thresholds via
pixel-level feedback loops, delayed and fluctuating sensitivity
variations can still cause segmentation problems. Our previous
work [8] addressed this by proposing fast-response feedback
loops based on a dual measurement approach, but did not
offer a way to simultaneously control model complexity. The
recent solution of [51] also addresses the flexibility problem
of segmentation methods by combining them using a genetic
programming approach.

The interested reader is referred to recent surveys [1]–[3],
[52], [53] for details on the background subtraction field.

III. METHODOLOGY

As shown in Figure 1, our proposed method can be split
into five components:1) a full “background model”, actually
composed of multiple pixel-level (local) models and a frame-
level (global) model; 2) a classifier, which produces “raw”
segmentation decisions for each pixel based on outlier detec-
tion; 3) a post-processing (or regularization) step that relies
on basic morphological operations to measure and eliminate
segmentation noise; 4) a recursive measurement filter used
to simulate the response of a sliding window over model-
observation similarity indicators; and 5) a closed-loop con-
troller block, responsible for adjusting the internal parameters
of other components based on their state and output. The pixel-
and frame-level models along with our classification strategy
are presented in Sections III-A and III-B. The recursive mea-
surement filter as well as feedback mechanisms and controllers
are discussed in Section III-C. Finally, three heuristics adopted
to further improve our method’s adaptability are presented in
Section III-D.

A. Word consensus for pixel-level modeling

Our novel non-parametric modeling approach is essentially
a hybrid between codebook [5] and sample consensus [7],
[54] strategies. “Word consensus” inherits the main advantages
of these modeling strategies while avoiding their pitfalls,
namely costly updates and high memory requirements. As
in other pixel-level, non-parametric modeling approaches, the
idea behind word consensus is to simultaneously build inde-
pendent background models by gathering data samples from
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local observations. Then, new observations can be classified
based on their model overlap. In the following paragraphs,
we present an overview of our proposed word-based modeling
approach and define some basic terms, and then discuss feature
matching, classification and update mechanisms.

Overview and definitions. In contrast to the terminology
of [5], we consider model samples as “words” instead of
“codewords” since they are not obtained via clustering, and
are thus not necessarily unique. Furthermore, our word-based
models are termed “dictionaries” instead of “codebooks”, as
the words they contain are sorted and systematically parsed for
matches during classification. We define the “local” dictionary
of a given pixel x as

Bl(x) = {ω1, ω2, . . . , ωN} (1)

where ωn are background words, and N is the number of
words in the dictionary. Each word essentially consists of a
background representation (characterized using local image
descriptors and/or low-level features) and a transient persis-
tence value. This value is estimated online based on the recur-
rence (i.e. match count) of the word among recent observations
at x. In our modeling approach, persistence defines the basic
criteria of word replacement and update policies: the more
“persistent” a word is, the less likely it is to be forgotten
or replaced by new observations. In comparison to modeling
approaches with planned obsolescence policies, our approach
is especially useful when segmenting intermittently moving
objects.

We evaluate the persistence of a word ω at time t using

qt(ω) =
nω

(tlω − tfω) + 2 · (t− tlω) + t0
, (2)

where nω is ω’s total occurrence count, tfω and tlω are,
respectively, the time at which it was first and last observed,
and t0 is a fixed offset value. The principle behind this
equation unique to our modeling approach is comparable to
the maximum negative run-length measure of [5] and the
confidence capping of distribution components in [18]: it
promotes the retention of recurring background words and
helps forget those that have not been observed recently. The
first denominator term, (tlω − tfω), measures the lifespan of
ω and is used to scale the persistence of words to the [0, 1]
range. It also reflects the “persistence inertia” of ω, i.e. how
well it resists persistence value fluctuations caused by short
time spans without occurrences. Besides, note that since the
second term of the denominator, (t−tlω), is multiplied by two,
the penalty incurred by a distant last occurrence is essentially
doubled. This means that while recurrence is important, good
words that suddenly disappear from observations can still
be eliminated quickly despite very long lifespans. The time
offset t0 is only used here to prevent new words from having
important persistence values.

Given (2), a mandatory training phase to learn and filter
words in local dictionaries is not required since the impor-
tance of all words can be continuously estimated over the
analyzed sequence. Thus, the segmentation process can be
fully initialized by sampling local pixel neighborhoods from

Fig. 2. Illustrations of possible local dictionary content for dynamic and
static background regions. The bars next to each word represents their relative
importance in the dictionary based on persistence. In (a), different words are
kept active simultaneously while new words are inserted. In (b), the dictionary
is shown right after model initialization, and many overlapping words are
present due to local neighborhood sampling. In (c), the same dictionary as
(b) is presented but at a later time in the sequence, showing a reduced number
of active words.

a single video frame that may contain foreground. Dictio-
naries will then naturally stabilize over time to contain only
recurring background words. This approach however requires
proper feature matching and update mechanisms, which will
be discussed next. For now, note that our local dictionaries
adapt to permanent background changes by learning a new
word when local observations cannot be matched to any
existing background word. We illustrated the content of a local
dictionary for a multimodal background region in Figure 2a.

To avoid the infinite expansion of local dictionaries, we cap
the number of active words they can contain (N ). To keep
word counts low, we can ignore or remove words that have
negligible persistence values. If a dictionary is full, words
with the lowest persistence values are eliminated and replaced
by new ones. To make these evaluations and replacements
more efficient, we systematically reorder the content of local
dictionaries during the matching process using a bubble sort
algorithm. That way, more persistent words are checked for
matches first, and they are less likely to be replaced by new
ones.

Feature selection and matching. In PAWCS, we charac-
terize pixel neighborhoods (for both background words and
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local observations) using RGB intensities and Local Binary
Similarity Pattern (LBSP) descriptors [55]. Local descriptors
can be used like any other low-level feature in our modeling
approach since, by design, we avoid merging or clustering data
samples. The goal of using LBSP here is to improve robustness
to illumination variations and enhance segmentation coherence
(or smoothness) through local texture description and match-
ing. As shown in [23], this color/LBSP description approach
also boosts change detection sensitivity (which is beneficial),
but induces additional false positives in regions with dynamic
textures. We discuss how we solve this problem via feedback
mechanisms below.

First, to determine if a word ω from a local dictionary
Bl(x) matches the observation of x at time t (noted It(x)),
we evaluate their color resemblance (via `1 distance and color
distortion [19]) and LBSP intersection (via Hamming dis-
tance). If all three distances fall below given change detection
thresholds, then ω is considered a match for It(x). To shorten
the equations presented in the following sections, we simply
write ||It(x) − ω|| < Rt(x) to refer to this matching step.
We define Rt(x) as a distance threshold for x at time t, with
Rt(x) ≥ 1. In practice, color and LBSP distance thresholding
is done in parallel, and their threshold values are respectively
calculated from Rt(x) using

Rc,t(x) = Rc ·
√
Rt(x) (3a)

and
Rd,t(x) = Rd + 2Rt(x) , (3b)

where Rc and Rd are fixed baseline values. Unlike color
thresholds, LBSP descriptor thresholds rely on an exponential
relation which is better suited to their nature: small Rd,t(x)
values lead to discriminative texture matching, and larger
Rd,t(x) values are used for approximative gradient matching.
As we will discuss in Section III-C, Rt(x) is automatically
increased in regions exhibiting dynamic textures. A large
enough Rt(x) value can thus exclude LBSP descriptors from
the matching process by inducing a Rd,t(x) value larger
than the maximum LBSP Hamming Distance. This leads
to a desirable reduction of change detection sensitivity, and
ultimately to the elimination of false positives in dynamic
texture regions.

Pixel classification. The nature of binary segmentation
methods based on change detection implies that all pixels in a
video frame are considered foreground unless their description
matches with the background model. As explained earlier,
we do not impose a unicity constraint on words in local
dictionaries. This means that finding a single match in the
background model for an observation is not enough to directly
proclaim a pixel as background. Our classification approach
instead relies on the idea of pixel labeling via consensus, i.e.
we consider all words from a local dictionary that overlap
(or match) the observation of a pixel in feature space to
determine its segmentation label. In classic sample consensus
methods, the number of matched background samples is the
sole determinant of the classifier: if at least a given number
of samples are matched, the pixel is labeled as background.
This can be interpreted as one-class classification for outlier

detection. In our case, rather than using a fixed match count
as the background classification threshold, we calculate the
persistence sum of all matched words, and compare this
value with a second dynamic threshold (noted Wt(x)). More
specifically, for a pixel x, we compute the local dictionary
persistence sum as

Ql,t(x) =
∑

ω ∈Bl(x)

qt(ω) s.t. ||It(x)− ω|| < Rt(x), (4)

and then classify x as foreground (1) or background (0) using

St(x) =

{
1 if Ql,t(x) < Wt(x)
0 otherwise , (5)

where St is the output (raw) segmentation map. Again, we
discuss how Wt(x) is automatically computed in Section III-C.

Since we do not rely on foreground modeling, (4) and (5)
encapsulate a one-class outlier detector. Here, Rt(x) dy-
namically controls the reachability distance in feature space,
which is similar to having an adaptive k in a k-Nearest
Neighbor classifier. On the other hand, Wt(x) dictates the
minimum cumulative instance weight (or persistence sum)
required to consider x as an inlier. Note that the persistence
sum Ql,t(x) can be seen as a general indicator of how well
It(x) is represented by the content of Bl(x). We will reuse
this representativeness estimation in Section III-C to evaluate
model-observation similarity.

Remember that words are sorted in local dictionaries based
on their persistence values; this means the summation in (4)
can be implemented so that it stops once the accumulated
persistence is greater than Wt(x). The primary ensuing ad-
vantage is faster processing, as dictionaries do not need to be
fully parsed for matches. This termination criterion however
also has a beneficial effect on the way word persistence values
fluctuate over time, which we discuss next.

Word and dictionary updates. As stated before, the per-
sistence value of a word can be evaluated online using (2)
based on its occurrence count and the time of its first/last
observations. In practice, these persistence parameters are only
updated when a match is found in (4). This means that if the
summation stops before reaching a potential matching word
ω because similar alternatives exist with higher persistence
values, then ω’s persistence will slowly decay, and it will
slide down in the dictionary’s word ranking. As illustrated
in Figure 2b and 2c, this is actually an important update
mechanism that gradually eliminates background words which
overlap in feature space. This mechanism is thus responsible
for controlling the number of active words (i.e. words with
a significant persistence value) in each local dictionary based
on the complexity of its associated background region. Below,
we discuss two other update mechanisms needed to make our
proposed modeling approach universal.

The modeling approach described so far cannot cope with
gradual background changes (e.g. the illumination variation
caused by a growing cloud cover) since the background
descriptions kept by words inside local dictionaries are not
updated. To improve robustness in such cases, we randomly
replace the color component of matched background words
with observed values. This is only done when local texture
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variation (expressed by the distance between matched and
observed LBSP descriptors) and color distortion (as presented
in [19]) are negligible, and with probability ρ = 1/Tt(x).
Here, Tt(x) ≥ 1 is a dynamic update rate further discussed in
Section III-C. This update mechanism is meant to only allow
a small proportion of background words to be modified in
response to gradual illumination changes. Therefore, words
left untouched will continue modeling the previous back-
ground state when the change is only temporary. This strategy
implicitly prevents incorrigible model drift and the saturation
of local dictionaries by words whose descriptions differ in
brightness, but not in local texture. The direct replacement of
a word’s color component by an observed value also helps
diversify dictionary content, and it is less costly than merging
them.

In order to improve the consistency between neighboring
local dictionaries, our method shares an important trait with
recent sample-consensus methods (e.g. [6], [8], [10], [23]):
pixel-level background information diffusion. The diffusion
process increases robustness to infrequent periodic change by
sharing information between afflicted regions, and helps erode
tenacious false positive segmentation blobs caused by “ghosts”
in the background model (see [4] for an exact definition). In its
original form (introduced in [6]), information diffusion grants
pixel models adjacent to x a chance to have one of their
samples randomly replaced by the description of It(x), but
only if x is classified as background. To achieve similar results
in our novel modeling approach, when (5) returns St(x) = 0,
we randomly select a neighbor of x and update the persistence
of each word of its local dictionary that matches with It(x).
Again, the probability of doing this is ρ = 1/Tt(x). Note
that a beneficial effect of these updates is a persistence boost
for words in static background regions, which helps detect
camouflaged and immobile foreground objects. In contrast
to the spatial context improvement proposed in [20], our
strategy allows pixel models to resist disturbances caused
by small background displacements and vibrating cameras
because spatial information is shared proactively.

The three proposed update mechanisms allow our pixel
models to behave like codebooks in static background regions.
Once stable, each local dictionary requires only one or two
highly persistent words (which are kept up to date during
illumination changes) to provide good segmentation results.
In dynamic background regions, our pixel models are akin
to sample consensus models, where 20 to 30 different words
can be active at once, all with low cohesion and persistence
values. Our pixel-level modeling approach alone is however
unable to recognize patterns that are too large or outside the
influence of local information diffusion. For this, we introduce
a frame-level modeling approach, described next.

B. Word consensus for frame-level modeling

Using a frame-wide or “global” dictionary (noted Bg) along
with local dictionaries for classifications fulfills the require-
ment set by the final Wallflower principle [36], i.e. background
models should take into account changes at differing spatial
scales. Capturing large scale background patterns is crucial

Fig. 3. Snapshots of the actual global word persistence maps used in the
CDnet2012 fountain02 sequence at frame 500. The top-left corners show
the pixel color description of each word; texture is omitted for illustration
purposes. Brighter spots indicate where matches occurred and the map was
updated; those points are the “seeds” from which the persistence is diffused.
In total, 24 global words were active (the 12 with highest total persistence are
shown here), covering over 95% of the image space with non-zero persistence
values.

when the observed scene exhibits intermittent change over
large areas, or when background elements are removed from
it. Besides, our pixel description approach produces highly
specific words that, if tied to intermittent background patterns,
may be discarded before being observed enough times to build
a strong persistence value. Our proposed global dictionary
model acts as a long term memory that tracks the use of
common words and spreads their influence beyond the reach of
the pixel-level diffusion update mechanism. Its only purpose
is to provide a safeguard against false positive detections by
relabeling x (i.e. overruling St(x) = 1) when a “global”
word with strong persistence is matched to its pixel-level
observation.

The persistence definition of (2) becomes problematic when
considering background words in a global setting, as it implies
no ownership or localization concept. Moreover, the state of
a dictionary shared among all pixel models would depend
on the ordering of local updates. Therefore, we define the
persistence of global words by using 2D maps that “localize”
the importance of these words in image space. These per-
sistence maps can be seen as heat maps over the observed
frames; some examples are shown in Figure 3. For each pixel
x and each global word ω, a map value (noted Φω(x)) is
directly linked to a single pixel model Bl(x). This means maps
can be fully updated asynchronously. Furthermore, this one-
for-one mapping in image space also means that frame-wide
operations (blurring, saturation, decimation) on global word
persistence maps are well defined and easy to implement.

Persistence map contents are updated in two ways. First,
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each time a pixel x is classified as background, it may be
randomly elected to parse Bg for a matching word ω and
perform a localized update of its persistence map. We define
this update as

Φω(x) = min
(
Φω(x) +Ql,t(x), Ql,t(x)

)
. (6)

This essentially creates a seed point in Φω used to propagate
persistence values to neighboring pixels. Second, the prop-
agation itself is achieved by periodically blurring the maps
of all global words using a normalized box filter. To avoid
obtaining homogeneous results over time, Φω(x) values are
also decimated while filtering. These two steps create another
word diffusion mechanism that has a much larger reach than
the one presented in Section III-A. Persistence map decimation
also allows the global dictionary to “forget” words over time.

Finally, the foreground classification of a pixel x can be
overruled if a matching global word (with a strong localized
persistence) is found. More specifically, we replace (5) by

St(x) =

{
1 if Ql,t(x) +Qg,t(x) < Wt(x)
0 otherwise , (7)

where

Qg,t(x) =

{
Φω(x) if ∃ω ∈ Bg s.t. ||It(x)− ω|| < Rt(x)

0 otherwise (i.e. no match found)
(8)

Since the LBSP descriptors we use are highly specific and
hard to match across regions, we simplify the global word
matching step in (8): instead of using a Hamming distance,
we compare the Hamming weights of the descriptors. This is
equivalent to an approximate gradient magnitude comparison.
While gradient orientation information is lost, this approach
preserves texture strength information, which is enough for
discriminative change detection.

New words can also be inserted in global dictionaries: pixel
models can be randomly selected to copy one of their highly-
persistent local background words to Bg and initialize its
persistence map, but only if it is missing from Bg . Again,
the maximum number of active words in Bg is capped (N ),
and words with the lowest overall persistence are replaced
first once full. The initialization is done by simply querying
random pixel models for words and filling persistence maps
until the global dictionary is full. Note that since (8) and
the update mechanisms only target one word at a time (i.e.
the first found match), and since global word descriptions do
not change throughout their lifespan, feature space overlap
between global words is highly unlikely. This means global
dictionaries typically contain more unique words than local
dictionaries.

C. Pixel-level feedback

Recall that the equations presented in the previous sections
primarily relied on three types of pixel-independent param-
eters. Namely, the feature-space distance threshold used for
matching in (4) and (8), Rt(x); the persistence threshold used
for classification in (5) and (7), Wt(x); and the rate used to
determine the probability of triggering all update mechanisms,
Tt(x). While fixed values could be used frame-wide, they

would need to be determined empirically from the analyzed
videos, and doing so would prevent pixel models from han-
dling multiple segmentation challenges at once. Therefore,
we dynamically adjust these internal parameters using pixel
level closed-loop controllers. Subsequently, we use simple
heuristics to increase the chance of triggering further model
updates and parameter adjustments where needed. As stated
in Section I, four aspects of our method are monitored and
used to control these feedback mechanisms: two of them
are related to the state of the background model (model-
observation similarity and illumination update propagation)
and two to the output (segmentation noise and instability).
These are discussed below.

Evaluating the similarity between local dictionary words and
local observations captured from input frames is the first step
in determining if the background is adequately modeled. We
do so for each pixel x by recursively filtering the estimations
of minimal matching distances between local observations
and words along with the “representativeness gap” of missed
matches (defined below). This provides a temporally smooth
measurement of model-observation similarity, noted d̄t(x),
which can be used in closed-loop controllers. The proposed
recurrence relation is defined as

d̄t(x) = (1−α) · d̄t−1(x) + α · dt(x) (9)

with

dt(x) = max

(
min

ω∈Bl(x)
||It(x)− ω|| , Wt(x)−Ql,t(x)

Wt(x)

)
,

(10)
where α ∈ [0, 1] is a fixed coefficient, and Wt(x)−Ql,t(x)

Wt(x)
is

the “representativeness gap”. As stated earlier, this is because
Ql,t(x) can be interpreted as an indicator of model represen-
tativeness.

In practice, since multiple distances are evaluated in
||It(x)− ω||, we find the minimum distance for each feature
(color, LBSP) in Bl(x) independently, normalize them to the
[0, 1] range, and then only use the maximum one in (10).
The “representativeness gap” is used to counterbalance the
similarity score for models that have good matches but low
persistence sums. In the end, dt(x) and d̄t(x) can only
take values in the [0, 1] range. The nature of the two terms
compared in (10) makes “ideal” background modeling (re-
flected by d(x)≈ 0) very hard to achieve in practice. This
forces continuous feedback that helps diversify pixel models.
The recurrence relation of (9) essentially models the infinite
impulse response of an exponentially weighted sliding window
filter, but at a very low computational cost. This approach
allows fast feedback responses to intermittent and irregular
changes.

Since d̄t(x) is updated every frame, foreground objects
that pass or stay immobile over x will inevitably increase
its value over time. Therefore, this first indicator cannot be
used by itself to control parameter adjustments as it does
not always truly reflect the similarity between background
models and observations. To address this, we rely on a second
pixel-level indicator, noted vt(x), that monitors noise in the
segmentation results. The assumption behind vt(x) is that
inadequately modeled regions emit more noise (i.e. alternating
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segmentation labels) than other regions, which are instead
constantly labeled as foreground or background. We define
vt(x) as a segmentation noise accumulator, and update it using

vt(x) =

{
vt−1(x) + 1 if

(
St(x)⊕ St−1(x)

)
= 1

vt−1(x)− 0.1 otherwise
(11)

where ⊕ is the XOR operator, and vt(x) is prevented from
taking negative values. This definition essentially means that
only static regions will exhibit low vt(x) values.

Using d̄t(x) and vt(x), we can now describe our pixel-
level controllers. First, we define the adjustment mechanism
for local update rates as

Tt(x) =


Tt−1(x) +

λT

vt(x) · d̄t(x)
if St(x) = 1

Tt−1(x)−
λT · vt(x)

2 · d̄t(x)
if St(x) = 0

(12)

where λT ∈ [0, 1] is a fixed scaling factor, and Tt(x) is bound
to the [1, 256] interval. Like all sample-consensus methods,
we use an inversely proportional relation to calculate the
probability ρ of triggering an update mechanism from Tt(x).
This means that high T (x) values lead to fewer updates, and
that when foreground is detected in static regions with low
segmentation noise, model updates will almost immediately
stop. In other words, T (x) will max out quickly due to
vt(x) ≈ d̄t(x) ≈ 0. However, dynamic and noisy background
regions will keep allowing model updates for much longer, as
in those cases, vt(x) � 0 and d̄t(x) ≈ 1, which results in
smoother variations.

Having models that update frequently is usually not enough
to eliminate all false foreground classifications caused by
strong dynamic background change. Locally adjusting feature
matching thresholds is often the fallback solution to avoid
having to build and maintain very large background models.
As stated in Section III-A, we derive both color and LBSP
matching distance thresholds from a common value, Rt(x).
The adjustment control loop behind this parameter based on
our two pixel-level indicators can be described as

Rt(x) =


Rt−1(x) + λR·vt(x) if Rt−1(x)<(1+d̄t(x)·2)2

Rt−1(x)−
λR

vt(x)
otherwise

(13)
where λR ∈ [0, 1] is a fixed scaling factor. Note that Rt(x) can
only take values greater or equal to 1; this lower limit reflects
the baseline matching distance threshold used in perfectly
static regions. We control Rt(x) variations via d̄t(x) based
on an exponential relation since it allows much easier feature
matching in highly unstable regions (i.e. when d̄t(x) � 0).
Here, vt(x) directly controls the variation step size of Rt(x).
In static regions, it prevents Rt(x) from increasing too fast
(which helps against camouflage problems), and in dynamic
regions, it prevents it from decreasing too fast while d̄t(x)
fluctuates.

Feature matching distances and local persistence sums are
closely related in the feedback process as both influence d̄t(x)

through (10). Therefore, we tie the adjustment mechanism of
persistence thresholds to Rt(x), and define it as

Wt(x) =
qt(ω1)

Rt−1(x) · 2
(14)

where ω1 is the first word of Bl(x), and thus its most persistent
one due to sorting. The idea here is to always have at least
one local word with enough persistence to classify a pixel as
background. This also means that the value of Wt(x) is kept
in the persistence range dictated by the words of Bl(x), and
each pixel model can have a unique classification behavior.

While our pixel-level controllers rely on segmentation noise
to provide rapid parameter adjustments, this type of noise is
an inherent characteristic of pixel-based segmentation due to
shot noise in the analyzed images. Segmentation noise can
also be easily eliminated afterwards using post-processing or
regularization techniques. In PAWCS, we ultimately clean the
raw segmentation maps St by using median blurring and
morphological operations. This essentially mimics the effect
of a more complex frame-level regularization approach at a
low cost.

D. Model adaptability

The pixel-level controllers are mostly responsible for the
overall flexibility of our method, but we also define three
heuristics to further improve model adaptability. The first one
relies on texture analysis to provoke extra updates in uniform
background regions. This leads to stronger word persistence
in local dictionaries, and thus better long-term word retention.
In short, we cut down the value of Tt(x) when the observed
LBSP descriptor in It(x) is “flat” (i.e. its Hamming weight is
close to zero), which causes update mechanisms to trigger
more often. The assumption here is that uniform regions
are better background candidates than regions with strong
gradients. Cluttered regions are largely unaffected by this
criterion; this indirectly helps prevent “ghosts” from forming
in highly textured background regions due to small, temporary
texture displacements.

The second heuristic we use is based on segmentation
instability. Large, long-term discrepancies between the “raw”
output segmentation St(x) and its post-processed equivalent
are not as likely due to alternating labels than to small
dynamic background regions (e.g. leaves in a tree). Our local
feature description approach is very sensitive to such small
variations; to help post-processing, we double the fixed Rd

offset in (3b) when discrepancies above a fixed threshold
are detected for x. This reduces the texture change detection
sensitivity in the matching process and eliminates more false
positive classifications in those regions.

Our last heuristic is responsible for spreading illumination
updates between neighboring pixel models and causing chain
reactions that allow large background surfaces to be updated
rapidly. As stated in Section III-A, the color component of
words can sometimes be updated to account for gradual
changes in the background. To propagate these updates, we
keep a 2D map of where they happen; then, for a pixel x, if
one of its neighbors was recently updated, we halve the value
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of Tt(x). This approach allows our model to respond rapidly
and efficiently to frame-wide lighting variations.

IV. EXPERIMENTS

The state-of-the-art presented in Section II makes it clear
that traditional datasets (e.g. [36], [56]) are too small and no
longer challenging to modern background subtraction meth-
ods. Moreover, classic methods (e.g. [15], [16]) have long
since been surpassed and no longer offer a good performance
reference. To properly evaluate our method, we rely on the
2012 and 2014 versions of the ChangeDetection.net (CDnet)
benchmark and dataset [1], [11], [12]. Unlike older alterna-
tives, the CDnet dataset offers a wide variety of real-world
sequences split into eleven categories based on the challenges
they contain. Totaling nearly 160,000 manually annotated
frames, it is several orders of magnitude larger than other real-
world datasets, and multiple times larger than those based on
synthetic data. Part of the groundtruth is also withheld and
kept for online testing to prevent overtuning.

In Section IV-A and IV-B, we respectively discuss our 2012
and 2014 CDnet results, and compare them to those of 27
methods listed online2 or self-reported in prior publications
(we report only the top performers). Note that not all methods
tested on the 2012 dataset have been tested on the 2014
version, as the latter is much harder, and some authors prefer
focusing on a smaller subset of segmentation challenges.
Finally, we discuss memory footprint, processing speed and
the possibility of a parallel implementation in Section IV-C.

We use the same PAWCS configuration to process all
sequences of the 2012 and 2014 versions of the CDnet
dataset. This is a disadvantage, as methods which were only
tested on the 2012 version were specifically tuned for only
those categories. We assume all self-reported results used
for comparisons followed the tuning guidelines of the CDnet
benchmark. To determine which parameters to use for LBSP
feature description, we followed the approach of [8], which
dynamically balances them based on the observed scene’s
gradient content. We also used the frame-level component
presented in [8] to detect drastic changes (e.g. light switch
events) in the analyzed sequences, and automatically reset
our model when needed. Besides, we fix the value of the
metaparameters presented in the previous sections as follows:
• Word weight offset value: t0 = 1000
• Maximum number of words per dictionary: N = 50
• Baseline color distance threshold: Rc = 20
• Baseline LBSP distance threshold: Rd = 2
• Feedback recurrence adaptation rate: α = 0.01
• Local update rate change factor: λT = 0.5
• Local distance threshold change factor: λR = 0.01

For more details on the post-processing steps and feedback
heuristics of PAWCS, the reader is invited to refer to our
implementation3.

We limit the presentation of qualitative results (Figures 4
and 5) due to space constraints and because the difference

2http://www.changedetection.net
3https://github.com/plstcharles/litiv

TABLE I
SEGMENTATION RESULTS OF PAWCS ON CDNET2012

Category Re Pr FM MCC
baseline 0.941 0.939 0.940 0.938
camera jitter 0.784 0.866 0.814 0.812
dynamic background 0.887 0.904 0.894 0.894
interm. obj. motion 0.749 0.839 0.776 0.774
shadow 0.917 0.871 0.891 0.887
thermal 0.850 0.828 0.832 0.828
overall 0.855 0.875 0.858 0.855

Fig. 4. Qualitative comparison of our segmentation results with the
groundtruth on various sequences of CDnet2012. Gray regions in the
groundtruth are not evaluated.

between state-of-the-art methods and groundtruth is some-
times hard to perceive. Our full segmentation results can be
downloaded via the CDnet evaluation platform, where more
granular comparisons are also possible with most methods
based on seven evaluation metrics.

A. CDnet 2012

We first present in Table I the average Recall (Re), Precision
(Pr), F-Measure (FM) and Matthew’s Correlation Coefficient
(MCC) scores of PAWCS on CDnet2012. The definition of the
first three metrics can be found in [11]. MCC is also used here
since it provides a good assessment of overall performance in
unbalanced binary classification problems, which background
subtraction falls into. It is defined by

MCC =
(TP · TN)− (FP · FN)√

(TP+FP)·(TP+FN)·(TN+FP)·(TN+FN)
, (15)

where True Positives (TP), True Negatives (TN), False Posi-
tives (FP) and False Negatives (FN) are defined like in [11].

Note that the description of each challenge, category and
sequence is provided in [1], [11]. We can see from Table I

http://www.changedetection.net
https://github.com/plstcharles/litiv
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TABLE II
AVERAGE PER-CATEGORY AND OVERALL SCORES ON CDNET2012 a

Method Baseline Cam. Jitt. Dyn. Bg Int. Mot. Shadow Thermal Overall (2012)
FM FM FM FM FM FM Re Pr FM ↓

PAWCS (proposed) 0.940 0.814 0.894 0.776 0.891 0.832 0.855 0.875 0.858
Shared GMM [57]†∗ 0.935 0.817 0.867 0.798 0.813 0.825 - - 0.842
FTSG [38]∗ 0.933 0.751 0.879 0.789 0.883 0.777 0.838 0.867 0.835
SuBSENSE [8]∗ 0.950 0.815 0.818 0.657 0.899 0.817 0.828 0.858 0.826
MBS V0 [58]∗ 0.928 0.836 0.790 0.709 0.778 0.811 0.790 0.849 0.809
2-pass RPCA [31]† 0.928 0.815 0.782 0.653 0.806 0.760 0.799 0.798 0.796
AMBER+ [50]∗ 0.881 0.711 0.843 0.721 0.813 0.760 0.791 0.827 0.788
CwisarD [59] 0.908 0.781 0.809 0.567 0.841 0.762 0.818 0.774 0.778
Spectral-360 [60] 0.933 0.716 0.787 0.566 0.884 0.776 0.777 0.846 0.777
DPGMM [18] 0.929 0.748 0.814 0.542 0.813 0.813 0.827 0.793 0.776
BMTDL [39]† 0.877 0.725 0.753 0.686 0.810 0.793 0.785 0.773 0.774
M.-H. Yang’s [24]† 0.883 0.787 0.808 0.525 0.860 0.754 0.828 0.786 0.769
ST-HBF [40]† 0.934 0.712 0.828 0.535 0.864 0.735 - - 0.768 b

SGMM-SOD [61] 0.921 0.672 0.688 0.715 0.865 0.735 0.768 0.835 0.766
DECOLOR [30], [31] 0.923 0.778 0.708 0.595 0.832 0.708 0.801 0.727 0.757
PBAS [10] 0.924 0.722 0.683 0.575 0.860 0.756 0.784 0.816 0.753
EFIC [62]∗ 0.917 0.713 0.578 0.578 0.820 0.838 0.809 0.741 0.741
PSP-MRF [47] 0.929 0.750 0.696 0.565 0.791 0.693 0.804 0.751 0.737
PCP [29], [31] 0.911 0.722 0.694 0.537 0.789 0.719 0.701 0.776 0.729
SC-SOBS [41] 0.933 0.705 0.669 0.592 0.779 0.692 0.802 0.732 0.728
CDPS [63] 0.921 0.487 0.750 0.741 0.809 0.662 0.777 0.761 0.728
AAPSA [43]∗ 0.918 0.721 0.671 0.510 0.795 0.703 0.708 0.801 0.720
SMSOM-BM [42]† 0.927 0.634 0.675 - - 0.793 - - -
a Red-bold entries indicate the best result in a given column, and blue-italics the second best.
b We recalculated the overall result of [40] based on the CDnet evaluation guidelines.
∗ Extracted from CDnet2014 results.
† Self-reported.

that our method offers good balance between precision and
recall in all test categories but “camera jitter” and “intermittent
object motion”. In the former, vibrating cameras cause the
entire observed scenes to be perceived as dynamic. This means
that pixel model updates trigger very often and that static
foreground objects become part of them very fast, which
leads to lower Recall scores. The second problematic category
is of particular interest here: “intermittent object motion”
contains four videos focused on long-term immobile object
segmentation, and two on “ghost” elimination (i.e. purging
the model of background objects removed from the scene).
A lower Recall score in this category indicates that some
foreground objects were eventually “lost” to the background
model over time. In reality, this difference is not surprising, as
very little time is allowed to “learn” the empty background,
therefore our words never attain “strong” persistence values.
This category is also by far the hardest in CDnet 2012; we
discuss it in detail later in this section. The other categories
shown in Table I deal with more traditional challenges of
background subtraction, and our method performs well in all
of them.

Next, we present in Table II a compilation of the per-
category and overall F-Measure scores of the 23 top-
performing methods published and available online as of July
2015. Like [8], [18], we do not use the official CDnet rankings
in these results, as adding and removing methods from the
comparison pool (no matter their performance) can drastically
affect their final ordering. The F-Measure scores used instead
were found to be closely correlated with the method rankings
in all three previous CDnet evaluation reports [1], [11], [12]. F-
Measure is also the most common metric used for comparison
in the literature, and thus allows us to list practically all self-

reported results of methods not yet on the online benchmark.
Table II shows that PAWCS outperforms all other methods

based on overall Recall, Precision, and F-Measure scores
for CDnet2012. It also places first or second for F-Measure
in four out of six categories, with a noticeable gap to the
state-of-the-art only in “intermittent object motion”. Even in
the “camera jitter” category, the results of PAWCS are only
slightly worse than those of the best methods, which rely on
multiple configurations [57], prior image realignment [31],
or supervised training [58] to address the shaking camera
challenge. This means our dictionary update and feedback
mechanisms are already quite sufficient for this task. Besides,
compared to others, PAWCS excels in the “shadow” category,
offering performance similar to the performance of multiple
methods in the less-challenging “baseline” category. In fact,
as stated in [12], while “hard” shadows are still a challenge
for all methods, soft shadows are no longer problematic to
modern solutions. In our case, this is due to our illumination
update mechanisms as well as our choice of features for word
description. We can also note that overall, our “online” method
outperforms all recent robust PCA-based methods [29]–[31]
despite the fact that we “stream” the data in an online fashion
(as opposed to offline batch-processing and optimization).

The advantages of our novel word consensus modeling strat-
egy can be easily outlined by comparing our results to those
of SuBSENSE [8] since both methods use similar features
and feedback mechanisms. While the results of PAWCS are
slightly worse in the “baseline” category and equivalent in
“camera jitter” and “shadow”, they are clearly superior in
“dynamic background” and “intermittent object motion”. This
means our dictionaries can better reflect the multimodality
of dynamic regions while staying sensitive to outliers, and
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TABLE III
AVERAGE RECALL, PRECISION AND F-MEASURE SCORES ON

THE INTERMITTENT OBJECT MOTION CATEGORY OF
CDNET2012 a

Method Recall Precision F-Measure ↓

Shared GMM [57]†∗ - - 0.798
FTSG [38]∗ 0.835 0.933 0.789
PAWCS (proposed) 0.749 0.839 0.776
CDPS [63] 0.808 0.762 0.741
AMBER+ [50]∗ 0.762 0.753 0.721
SGMM-SOD [61] 0.736 0.814 0.715
MBS V0 [58]∗ 0.639 0.820 0.709
BMTDL [39]† 0.684 0.709 0.686
2-pass RPCA [31]† 0.653 0.715 0.683
SuBSENSE [8]∗ 0.658 0.796 0.657
SC-SOBS [41] 0.724 0.590 0.592
EFIC [62]∗ 0.742 0.563 0.578
PBAS [10] 0.670 0.705 0.575
Spectral-360 [60] 0.595 0.719 0.566
DPGMM [18] 0.676 0.653 0.542
a Red-bold entries indicate the best result in a given column, and

blue-italics the second best.
∗ Extracted from CDnet2014 results.
† Self-reported.

TABLE IV
SEGMENTATION RESULTS OF PAWCS ON CDNET2014

Category Re Pr FM MCC a

bad weather 0.718 0.947 0.815 0.812
low framerate 0.773 0.641 0.659 0.657
night videos 0.361 0.654 0.415 0.432
pan-tilt-zoom 0.698 0.473 0.462 0.491
turbulence 0.812 0.681 0.645 0.786
overall (2014 only) 0.672 0.679 0.600 0.636
overall (2012+2014) 0.772 0.786 0.740 0.756
a Approximated based on available groundtruth.

that persistence is an ideal way to determine which words are
more important for modeling based on past observations. The
difference in the “baseline” category results can be explained
by a slight increase in false negative classifications due to the
global dictionary acting as a “fallback” model to prevent false
positives elsewhere. Comparisons of some of our segmentation
results with the groundtruth are shown in Figure 4.

Finally, we compare the results of various methods for the
“intermittent object motion” category in Table III. We can
note that most recent methods perform poorly when static
foreground object and background ghosts are involved. The
top performers, FTSG [38] and Shared-GMM [57], both rely
on foreground modeling as well as region-level or object-
level processing steps and heuristics to specifically tackle
this category. On the other hand, our modeling approach
only relies on the analysis of word persistence based on the
principles detailed in Section III. Thus, we keep to low-level
mechanisms without involving object shape semantics. Our
design is therefore in accordance with the first Wallflower
principle [36], but at a disadvantage when faced with these
challenges.

Fig. 5. Qualitative comparison of our segmentation results with the
groundtruth on various sequences of CDnet2014. Gray regions in the
groundtruth are not evaluated. An obvious false positive blob is visible in
the last row’s segmentation map; this is a temporary “ghost” artifact caused
by a van that left the scene after being parked there.

B. CDnet 2014

As stated earlier, the 2014 dataset is much more complex
than the original version. Its categories include videos captured
outside during snowstorms, extremely low framerate videos
with rapid illumination variations and color profile changes,
highway surveillance videos captured at night with intense
glare effects from car headlights, videos captured by pan-
tilt-zoom (PTZ) cameras being operated, and thermal imaging
videos of long-range surveillance in high temperature environ-
ments. Just like for the CDnet2012 dataset, we first present in
Table IV PAWCS’s performance on CDnet2014 using average
Recall (Re), Precision (Pr), F-Measure (FM) and Matthew’s
Correlation Coefficient (MCC) scores. Note that since MCC
is not computed by the online CDnet benchmark platform,
and since half of the groundtruth is withheld, the MCC scores
reported here are only representative of half of the dataset.

In comparison with the metrics shown for CDnet2012, it is
quite clear that the 2014 dataset is more challenging. Only the
“bad weather” category has F-Measure and MCC scores above
80%, and two categories have Precision or Recall scores below
50%. These Precision and Recall scores respectively indicate
that more than half of foreground classifications were false,
and more than half of all true foreground classifications were
missed by our method. Surprisingly, PAWCS performed better
in the “pan-tilt-zoom” category (in which the basic assumption
of the static camera is violated) than in “night videos”. This
can be explained by two factors: first, our global dictionary
allows large uniform regions (which make up the bulk of all
background areas in PTZ videos) to be properly recognized
as background despite important camera motion. Second, due
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TABLE V
AVERAGE PER-CATEGORY AND OVERALL SCORES ON CDNET2014 a

Method Bad Weath. Low Fr. Night Vid. PTZ Turbul. Overall (2014) Overall (2012+2014)
FM FM FM FM FM Re Pr FM Re Pr FM ↓

SuBSENSE [8] 0.862 0.645 0.560 0.348 0.779 0.794 0.623 0.639 0.812 0.751 0.741
PAWCS (proposed) 0.815 0.659 0.415 0.462 0.645 0.672 0.679 0.600 0.772 0.786 0.740
FTSG [38] 0.823 0.626 0.513 0.324 0.713 0.678 0.652 0.600 0.766 0.770 0.728
MBS V0 [58] 0.773 0.628 0.516 0.512 0.570 0.635 0.617 0.599 0.719 0.744 0.714
EFIC [62] 0.779 0.663 0.655 0.584 0.671 0.758 0.701 0.670 0.786 0.722 0.709
CwisarDH [44] 0.684 0.641 0.374 0.322 0.723 0.531 0.678 0.549 0.661 0.773 0.681
Spectral-360 [60] 0.757 0.644 0.483 0.365 0.543 0.693 0.540 0.558 0.735 0.705 0.673
AMBER+ [50] 0.767 0.469 0.380 0.135 0.755 0.599 0.584 0.501 0.704 0.716 0.658
AAPSA [43] 0.774 0.494 0.416 0.330 0.464 0.579 0.561 0.496 0.650 0.692 0.618
SC-SOBS [41] 0.662 0.546 0.450 0.041 0.488 0.715 0.462 0.437 0.762 0.609 0.596
KNN [9] 0.759 0.549 0.420 0.213 0.520 0.658 0.547 0.492 0.665 0.679 0.594
RMoG [64] 0.683 0.531 0.427 0.247 0.458 0.582 0.543 0.469 0.594 0.697 0.574
GMM [15] 0.738 0.537 0.410 0.152 0.466 0.653 0.484 0.461 0.685 0.603 0.571
KDE [16] 0.757 0.548 0.436 0.037 0.448 0.729 0.457 0.445 0.738 0.581 0.569
a Red-bold entries indicate the best result in a given column, and blue-italics the second best.

to the use of LBSP descriptors, and since our dictionaries
are kept at minimal word counts, our method is sensitive to
noise and color variations in low contrast background regions
(such as the ones in “night videos”). On the other hand,
the “turbulence” and “bad weather” categories also mostly
contain low contrast videos with dynamic background regions,
making it a combination of very challenging problems. Finally,
the “low framerate” category shows decent results in all but
one sequence (not shown here), filmed at one frame per six
seconds. This problematic sequence presents very large color
variations along with dynamic background elements, making
it very hard to process.

We compare in Table V the scores obtained by 14 methods
which were tested thus far on CDnet2014. We omit the
2014 dataset results of [57] as their published results are
significantly different from those reported online. Again, the
performance of PAWCS is well above the average, ranking
second in overall F-Measure (by a marginal difference) to [8],
and third in overall F-Measure for the 2014 categories only.
On the other hand, on the official CDnet rankings available
online based on all seven evaluation metrics (not shown here)
list PAWCS as the best method by a good margin.

The F-Measure scores of PAWCS are lower than those of
the state-of-the-art in the “bad weather”, “night videos” and
“turbulence” categories. As mentioned before, this is due to the
dynamic background/low contrast combination of challenges
present in those sequences, to which our low-complexity
modeling approach has difficulty adapting. Still, the overall
2012+2014 F-Measure score of PAWCS demonstrates that it
is very flexible, and that it tackles most challenges without
compromising too much of its performance elsewhere. In
terms of Recall and Precision, we can observe balanced scores
that are higher than those of most methods in both dataset
versions, further demonstrating the overall flexibility of our
approach. We present some qualitative comparisons between
the groundtruth and our segmentation results in Figure 5.

C. Processing speed and memory footprint

Our C++ implementation processes the entire CDnet2012
dataset on a third generation, quad-core Intel i5 CPU (one
sequence per core) at 22 frames per second, and it processes

individual QVGA sequences on a single core at 15 frames
per second. This is about 50% slower than [8] given equal
model sizes for both methods, but still much faster than most
video segmentation methods. Comparing this result to others
is difficult due to the lack of open-source implementations
available online; we offer ours for future reference.

Out of the entire processing load for a single frame,
about 75% of it is for parsing dictionaries for matches and
updating them, 15% is for feedback mechanisms, 5% is for
frame-wide operations on global word persistence maps, and
5% is for output regularization via morphological operations
and median blurring. The complexity of PAWCS is constant
with respect to the number of pixels in the input frames.
Given the ample opportunities for parallelization, real-time
processing of very high resolution videos appears achievable.
We recently implemented a similar non-parametric sample
consensus method [23] on GPU, and reached a speedup of
30x over its CPU implementation (i.e. it could process several
thousand frames per second). This speed was capped only by
the memory bandwidth of the hardware we used.

As for the memory footprint of our proposed method, note
that a background word requires three bytes of memory per
channel to store color information and LBSP binary strings
(based on the 5x5 pattern of [55]), and three integers to store
its persistence parameters (four bytes each, if tmax > 216 is
expected). In a worse-case scenario where all pixel models
require N = 50 background words (and those words are
never discarded), and where the target video is RGB 1080p
(≈ 2.1 megapixels), the memory requirement set by our pixel
modeling approach would be slightly over 2 GB. Global words
would also add less than 2 MB each to the total, given that their
persistence maps are implemented using one byte per pixel.
For embedded/mobile applications, given an average of N = 5
active words per pixel model and a QVGA resolution, the
memory requirement of PAWCS would be less than 10 MB.

V. CONCLUSION

“Word consensus”, a new non-parametric pixel-level mod-
eling approach, has been presented. It works by capturing
local image samples and evaluating their recurrence among
recent observations. We showed through our experiments with
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PAWCS that word consensus is performant when tackling
segmentation challenges involving static foreground objects
and multimodal background regions. Its ability to automati-
cally deduce which model samples (or words) are the most
important background components based on temporal persis-
tence allows it to keep a low overall memory footprint. With
the addition of closed-loop controllers and other feedback
mechanisms, our complete method allows each targeted image
pixel to behave differently in terms of classification behavior
and model complexity. A frame-level word dictionary is also
considered to increase spatial coherence between pixel models
and prevent false classifications due to large-scale background
change patterns.

Our results showed that our method is superior to most in
scenarios with traditional and modern background subtraction
challenges. There is still room for improvement however; us-
ing a more sophisticated output regularization step (e.g. [47]),
or explicitly modeling the foreground appearance of objects
pixel-wise are good avenues for future work.
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