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Abstract

In this paper, we present a new multiple hypotheses
tracking (MHT) approach. Our tracking method is suitable
for online applications, because it labels objects at every
frame and estimates the best computed trajectories up to
the current frame. In this work we address the problems of
object merging and splitting (occlusions) and object frag-
mentations. Object fragmentation resulting from imperfect
background subtraction can easily be confused with split-
ting objects in a scene, especially in close range surveil-
lance applications. This subject is not addressed in most
MHT methods. In this work, we propose a framework for
MHT which distinguishes fragmentation and splitting using
their spatial and temporal characteristics and by generat-
ing hypotheses only for splitting cases using observation in
later frames. This approach results in a more accurate data
association and a reduced size of the hypothesis graph. Our
tracking method is evaluated with various indoor videos.

1 Introduction

Multiple object tracking (MOT) consists of two main
parts; the first part involves localizing the targets in an im-
age (object detection) and the second part involves associat-
ing detected regions or observations to tracked targets (data
association). The critical part of MOT is data association.
Data association deals with two main issues: 1) merging
and splitting objects in the scene (occlusion), and 2) short-
comings of object detection methods such as misdetection
of some parts of an interesting object (fragmentation). In
this work, a MOT method, which is able to deal with ob-
ject occlusion and object fragmentation, is proposed and the
shortcomings of previous works are addressed.

The first issue concerning MOT is occlusion resulting
from interactions between objects in the scene. Because
of dramatic changes in the appearance of occluding tar-
gets, it is extremely challenginh to maintain target’s iden-

tity using object appearance or motion information. There-
fore, an object re-identification is required when occluding
targets split. Graph representation of tracked targets en-
ables us to integrate spatial and temporal information and
propagate the object identity both forward and backward in
time before merging and after splitting. Graph representa-
tion has been used previously in several studies [5, 3, 2].
One of the classical graph-based MOT methods is multi-
ple hypothesis tracking (MHT) introduced by Reid [9]. The
MHT approach has been also applied in many works such as
[4, 8, 1]. The basic idea of MHT is considering information
of several frames, keeping all possible hypotheses about the
trajectories of objects, and finally choosing the most proba-
ble hypothesis for the trajectory of objects. The main draw-
back of this method is exponential growth of hypotheses.
In [8], a real-time MHT is proposed that controls the ex-
ponential growth of the hypotheses by pruning unlikely hy-
potheses to meet criteria for complexity and memory us-
age. In our work, hypothesis generation is only performed
for splitting cases. In other cases when there is no iden-
tity ambiguity, sequential data association is applied. Our
data association strategy reduces the number of hypotheses
tremendously without graph pruning (see further informa-
tion in section 5).

In most MHT studies, data association is only based
on previous observation and is not guided by later frames.
In the cases where in few frames the object appearance
changes considerably because of illumination variations
or erroneous foreground segmentation, the observations
may not provide adequate information for data associa-
tion in later frames and consequently, the errors from these
wrongly generated hypotheses propagate in later frames. In
[1], a MHT is proposed to have a reliable tracking system by
exploiting later frames and relating them to previous obser-
vations. This approach is limited, as it requires the whole
video before producing the tracking results because of an
offline upward analysis that relates later observations to pre-
vious ones. In our work, this data association strategy is
adopted for continuous stream of video and upwards analy-



sis is performed at each frame. Our MOT is able to correct
erroneous data associations in previous frames by using the
observations in the current frame (see section 6 for details).

The second issue that MOT should deal with is imper-
fections of the object detection outputs such as misdetec-
tion of some parts of an interesting objects [10] which re-
sults in an object region fragmenting into few sub-regions.
In close-range videos, object fragmentation may visually be
confused with splitting of a group of objects in the scene. In
Reid’s MHT [9] data associations are assumed to be one-to-
one. This means a target is associated with only one mea-
surement (detected region in the scene) and vice versa. This
method cannot associate all fragmented regions related to
one object to a corresponding tracked target. In a recent
work [7], a MHT is proposed which distinguishes splitting
and fragmentation using constant object size information.
Constant object size is a strong constraint that does not
take into account the effect of shadows on the size of blobs
and camera position. Our MHT approach handles object
fragmentation before hypothesis generation. In our work,
splitting and fragmentation are distinguished by monitor-
ing the average velocity of the blobs (observations) for a
few frames. This is based on the fact that fragmented blobs
show coherent behaviour and move with the same average
velocity.

In the remainder of this paper, the architecture and the
main steps of the tracking algorithm are presented. We also
report experimental results of indoor videos.

2 System overview

Our visual tracking system is designed for a single static
monocular camera. Fig. 1 shows the main steps of our
tracking system. Before tracking, object detection is per-
formed using Gaussian mixture background subtraction and
shadow elimination proposed in [6].

Figure 1. Overview of the tracking system.

Our algorithm has three main steps. In the first step,
matching is performed between detected blobs in previous

frame t − 1 and current frame t to detect entering, leaving,
correspondence, merging, and splitting events, and to de-
termine the state of blobs in current frame as single object,
group of objects, and possible fragment. We use two graphs
for tracking. An event graph is built to record all the split-
ting and merging between blobs and store their appearance
information while they are tracked. A hypothesis graph is
built to generate hypothesis for handling data association of
split objects. In the second step, named graph updating, the
necessary operations are performed to update the informa-
tion of both graphs after an event. In the last step, object
labelling is done for all objects in the scene and the trajec-
tory is estimated for objects which have left the scene in the
current frame.

3 Event graph and hypothesis graph

Fig. 2 shows an event graph with its corresponding hy-
pothesis graph. The event graph represents all blobs with
their merging and splitting events during tracking. Each
vertex of this graph (track node) stores appearance informa-
tion of a blob including centroid positions, adaptive color
histogram (see section 5), blob state, and the frame number
of the last update in the node. Edges represent merging and
splitting events among the blobs.

The hypothesis graph is a directed weighted graph. The
vertices of this graph (hypotheses nodes) simply correspond
to track nodes of the event graph belonging to entering blobs
(blobs which appear in scene) and split blobs (blobs which
come apart from a group blob or a single blob). Iden-
tified group blob do not have hypothesis nodes. This is
because hypothesis nodes are used to solve the data asso-
ciation problem before and after object interactions. The
weight of each edge ninj which represents a hypothesis is
defined as

ω (ninj) = |AH (ni) − AH (nj)| , (1)

where ω (ninj) is the Euclidean distance between two
adaptive color histograms of two blobs belonging to hypoth-
esis nodes ni and nj .

In practice, the edge information are recorded in the
nodes. Hence, for each hypothesis node ni, three sets of
nodes called S (Source), E (End) and BH (Best Hypothe-
ses) are defined as

S (ni) = {∀nj |∃njni} , (2)

E (ni) = {∀nk|∃nink} and (3)

BH (ni) = {∀nj ∈ S (ni) |E1 (nj) = ni} . (4)

The sets of Eq. 2 and Eq. 3 are ordered increasingly
based on the weights of their common edges with ni. In Eq.
4, BH can be empty or contain one or more elements. E1 is



Figure 2. Event graph (left), hypothesis graph
(right). In the hypothesis graph, the num-
ber at the left of each hypothesis node cor-
responds to a track node in event graph with
the same number in the upper left corner.

the first element of E. S, E, and BH sets are used for ob-
ject labelling and for finding trajectories. It is important to
notice that event graph and hypothesis graph may be com-
posed of more than one component (subgraph ) since the
connections between nodes reflect the interactions that hap-
pened between the blobs during tracking (Two blobs that do
not interact are not connected).

4 Matching process

In the first step of our algorithm, a distance matrix is
computed to find the possible corresponding blobs Bi(t −
1) and Bj(t) in two consecutive frames along with their
appearance dissimilarities. It is defined as

Dt
t−1(i, j) =

{

d(hBi(t−1), hBj(t)) if overlapped
−1 otherwise ,

(5)
where Dt

t−1(i, j) is the color histogram intersection dis-
tance between the ith blob in frame t − 1 and the jth blob
in frame t, if the two blobs bounding boxes overlap. Oth-
erwise, these two blobs cannot match each other and their
corresponding element in the matrix is −1. This assumption
is based on the fact that a blob should move on a short dis-
tance in two successive frames because of the frame rate of
the camera. Therefore, its bounding boxes in previous and
current frames should overlap. The size of distance matrix
is N×M , where N is the number of blobs in frame t−1 and
M is the number of blobs in frame t. The color histogram
intersection is defined as

d(hBi(t−1), hBj(t)) =

∑K

k=1 min(hBi(t−1)(k), hBj(t)(k))
∑K

k=1 hBi(t−1)(k)
,

(6)
where hBi(t−1) and hBj(t) are the color histogram of ith

blob in frame t − 1 and the jth blob in frame t, and K is
the number of color histogram bins.

A blob in frame t − 1 matches with a blob in frame t

if the dissimilarity is not −1. The events such as enter-

ing, leaving, merging, and splitting are detected by find-
ing the matching blobs in two consecutive frames using the
distance matrix. The state of each blob is determined. If
entering is detected, the state is single object, if merging is
detected (many blobs in frame t−1 match with one in frame
t), the state of merged blob is group of object, if a splitting is
detected (one blob in frame t − 1 matches with many blobs
in frame t), the states of splitting blobs are possible frag-
ment, and if correspondence is detected (one-to-one match),
the state remains unchanged.

5 Graph updating

Event graph and hypothesis graph are updated depending
on each detected event in matching process:

• If a blob in current frame t is an appearing object, a
track node in event graph and a hypothesis node in hy-
pothesis graph are added.

• If correspondence is detected between two blobs in
frame t−1 and t, the track node in event graph belong-
ing to the object is updated by adding its blob centroid
in current frame t, adding current frame number, and
updating its adaptive color histogram using

AHB(t) =

K
∑

k=1

αAHB(t−1)(k) + (1 − α)hB(t)(k).

(7)
In Eq. 7, AHB(t−1) is the adaptive color histogram of
blob B at frame t − 1 , K is the number of color his-
togram bins, and hB(t) is the color histogram of blob
B at frame t, and α (varying between 0 and 1) is an
adaptation parameter. Updating track node for corre-
spondence event is equivalent to sequential data asso-
ciation for blobs which are not in situation of possible
identification uncertainty. This choice is based on the
fact that if two blob regions in two consecutive frames
are found to be similar with a one-to-one matching, it
is very likely that they are associated with the same
object.

• If some blobs in frame t − 1 are merged into a sin-
gle blob in the current frame t, tracking of merging
blobs is stopped and a new track node in event graph
for group blob is initiated.

• If a blob in frame t − 1 has disappeared from the field
of view of camera, its track node in event graph is de-
activated and its trajectory is calculated (section 6).

• If splitting is detected, more processing is required as
described in the following subsections.



5.1 Splitting event

The most crucial event for data association in a merge-
split tracking approach is splitting, because the uncertain-
ties about identities of splitting blobs need to be handled.
Fig. 3 shows the inter-object occlusion handling steps for
a splitting event. These steps are detailed in the following
subsections.

Figure 3. The steps of inter-object occlusion
handling.

5.1.1 Event graph updating

In the frame where a splitting event is detected, for all split
blobs with the state of possiblefragment, track nodes are
added with related edges in the event graph (step 1, Fig.
3). Then splitting is distinguished from fragmentation in
the next step.

5.1.2 Fragmentation checking

Because of the nature of background subtraction methods,
whenever a moving object in the scene has a similar color as
the background, some parts of the moving object may not
be detected as foreground and cause fragmentation. The
goal of fragmentation checking module (step 2, Fig. 3)
is distinguishing between splitting and fragmentations. To
do this, for N frames (N = 4 based on experiments), the
system tracks the original blob (the blob before splitting)
as a whole, using the summation of the feature vectors of
all its possible fragmented blobs. It also tracks all possi-
ble fragmented blobs individually. If within N consecutive
frames after splitting all possible fragments are merged to
one blob, it will be assumed that the event was fragmenta-
tion. In this case, splitting is ignored (step 2b, Fig. 3) and

the tracking of the original object will be continued. Other-
wise, after N frames, fragmentation checking (step 2a, Fig.
3) distinguishes between fragmentation and splitting based
on the fact that fragmented blobs: 1) belong to one target,
2) are close in the image, and 3) exhibit coherent motion
over a few frames. In other words, the maximum differ-
ences in the average velocity between any pair of possible
fragmented blobs from the same object must be less than
a fixed threshold, and the distance moved by the centroids
of these blobs relative to each other is much smaller than
the overall distance moved by the centroid of the original
object. If a fragmentation is detected, we continue tracking
the original object and its fragmented blobs. Fragmenta-
tion checking will be repeated. But if a splitting is detected,
we stop tracking the original object and we continue track-
ing the split blobs as individual objects. The states of split
blobs become single object and we exit the fragmentation
checking module.

5.1.3 Removing hypothesis node

Our algorithm has hypothesis nodes only for blobs appear-
ing in the scene and split blobs, but it does not have hypoth-
esis nodes for group blobs (blobs for which it is known that
they include more than one tracking targets). This means
that if a blob (with the state single object) associated to a
hypothesis node splits in later frames, the blob state will be
corrected to group of objects and its node will be deleted
along with its related edges from the hypothesis graph (step
3, Fig. 3). In this way, we keep hypothesis nodes only for
individual objects to have smaller search space in hypothe-
sis graph and more accurate data association.

5.1.4 Generating hypothesis

To generate the hypotheses (step 4, Fig. 3), first for deter-
mined split blobs, hypothesis nodes are initiated. Then S,
E, and BH sets of all the nodes in the same subgraph as
the newly initiated nodes are updated. Generating hypoth-
esis only for nodes in the corresponding subgraph and not
for the other nodes in the hypothesis graph is part of our
strategy to reduce the number of hypotheses. To do the up-
date, newly initiated nodes are added to the E sets of the
nodes from previous frames in the subgraph, and the pre-
vious nodes in the subgraph are added in the S sets of the
newly initiated nodes. Also, the BH sets of newly initiated
hypothesis nodes are created according to their S sets. In
other words, all the nodes in the subgraph are connected to-
gether with directed edges from the past hypothesis nodes to
new hypothesis nodes. Weight of each directed edge is the
likelihood that the source node and the end node have the
same appearance and it is calculated using Eq. 1. After up-
dating E sets of the previous hypothesis nodes, if the first
elements of these sets are changed (S sets and E sets are



always ordered increasingly), consecutively for some other
nodes in the same subgraph, BH sets are updated. This is
based on the fact that the intersection of two BH sets for
two different nodes should be empty. The adaptive color
histograms is used for generating hypothesis (likelihood be-
tween two nodes), because it gives the global color informa-
tion of the blob during several frames and it helps reducing
the effect of dramatic changes in color histograms of blobs
caused by short-time variations of lighting or shadows.

6 Object labelling and finding trajectory

The goal of object labelling is identifying each tracked
blob with a label in the current frame. For correspondence
event, the blob’s label in frame t is the same as the blob’s
label in frame t − 1. For merging, the merged blob’s label
in frame t is the labels of all merging blobs in frame t − 1.
For entering blob in frame t, the label is a new one.

For splitting, the label of a split blob in frame t is de-
termined by processing the hypothesis graph. To do this,
we traverse the hypothesis graph bottom-up, from the latest
frame, starting from split blob’s hypothesis node ni . To do
this, TN (Traversing Nodes) set is initialized by

TN0(ni) = φ, (8)

and it will be updated by

TNt(ni) = (TNt−1(ni) ∪ BH(ncurrent)) − nnext. (9)

In Eq. 9, ncurrent is the current node during graph traversal
(at first ncurrent is ni and TNt−1(ni) is φ ), TNt(ni) is
a set of possible next destination nodes in current frame t,
and nnext is the next node to traverse in the graph chosen
with two criteria: 1) nnext exists in either BH(ncurrent) or
TNt−1(ni) 2) nnext has the closest temporal relation with
ncurrent. It is important to notice that if in BH(ncurrent)
or TNt−1(ni) more than one node obey nnext criteria, we
traverse these nodes separately. Traversing graph upward
and updating TN set will be continued until we reach a
node for which the TN set will become empty (nowhere to
go next). The split blob is labelled with the label of the blob
that we reach after traversal in hypothesis graph. A hypoth-
esis node belonging to a split blob which has an empty BH

set before starting graph traversal is a new appearing object
which gets a new label.

When an object has left the scene, we construct its tra-
jectory. To do this, the hypothesis graph is traversed in the
same way as for labelling to get its path in the hypothesis
graph. However, in the hypothesis graph, some parts of the
trajectory (when the object was tracked in a group) are miss-
ing, because group blobs have no nodes in hypothesis graph.
The missing parts of the path are recovered by completing
it with help of the event graph.

6.1 Illustrative example

Fig. 4 illustrates an example for trajectory construction
and error correction in data association (object labelling) for
two objects that occlude each other two times. In Fig. 4A
(left) (event graph), B1 and B2 are merged into G1, and
then G1 splits to B3 and B4. In the Fig. 4A (right) (hy-
pothesis graph), edges show the generated hypotheses for
B1, B2, B3, and B4. The thicker edges represent the best
hypotheses. We suppose that because of dramatic changes
in color histograms, split blobs are erroneously matched.
This means B3 seems more similar to B2 (smaller dissim-
ilarity) while, in fact, B3 is the same object as B1, and B4

seems more similar to B1 while, in fact, B4 is the same
object as B2. In later frames, in Fig. 4B (left) for the sec-
ond time B3 and B4 are merged into G2, and then G2 splits
to B5 and B6. Finally, let us suppose the B5 has left the
scene and we need to compute its trajectory. Fig. 4B (right)
shows that for split blobs (B5 and B6) hypotheses are gen-
erated not only from hypothesis nodes belonging to B3 and
B4 but also from hypothesis nodes belong to B1 and B2.
This is the strategy discussed in the introduction to allow
data association to be guided by later frames. Indeed, B5

is re-identified correctly as the same target as B1, and erro-
neously identified B3 and B4 in Fig. 4A are corrected based
on the observation of B5 and B6. To find the trajectory of
B5, the hypothesis graph is traversed starting from H5. First
H5 is the current node and TN1(H5) is {H3, H1}, then H3

is selected as the next node based on the two criteria and
TN2(H5) updates to {H1}. At last the next selected node is
H1 and TN3(H5) updates to φ because H1 is not connected
to any source node (BH is empty). So the trajectory up
to now is {B5, B3, B1}, which are the corresponding track
nodes of {H5, H3, H1}. The missing parts of the trajectory
of B5 is recovered by searching in event graph. Indeed, to
go from B5 to B3 and then B3 to B1 in the event graph, we
have to pass by G2 and G1. They are added to obtain the
complete trajectory {B5, G2, B3, G1, B1}.

7 Experiments

7.1 Experimental methodology

Our algorithm is written in C++. We use color histogram
in the HSV color space with 6 × 3 × 3 bins for matching
process and generating hypothesis. Our algorithm uses only
one fixed threshold for fragmentation handling (see Section
5.1.2). This threshold is for the average velocity difference
between objects. For all experiment, it is fixed at 3 pixels
per frame. For background subtraction, we use the method
of [11] using the parameters of table 1.

For our experiments, we used nine video excerpts.
The first seven video excerpts (LABSEQ1-LABSEQ7, 7.5



Figure 4. A) Event (left) and hypothesis graph
(right) after one merging and splitting. B) The
same graph updated after a second merging
and splitting. The number at the left of each
hypothesis node corresponds to a track node
in event graph with the same number in the
upper left corner of track node.

fps, and with between 201 to 569 frames of 320 ×
240 pixels) are chosen from LABSEQ video dataset
captured at our laboratory involving walkers interacting.
The hallway video excerpt (25 fps and 1226 frames of
384 × 288 pixels) and the shopping center video ex-
cerpt (25 fps and 1675 frames of 384 × 288 pixels)
are chosen from the dataset of the CAVIAR project
(http://homepages.inf.ed.ac.uk/rbf/CAVIAR/).

To evaluate quantitatively the effectiveness of our track-
ing system, we used a semi-automatic interactive ground-
truth generator to generate ground-truth trajectories of
tracking targets in a video sequence and compare them with
the computed trajectories of our tracking system. The cen-
troid of blobs for the ground truth is generated after back-
ground subtraction which means the centroind position is
computed on detected foreground regions and not the com-
plete image. We use four metrics: 1) fp is the number of
false computed trajectories without corresponding ground-
truth trajectories; 2) fn is the number of ground-truth trajec-
tories without corresponding computed trajectories in our
tracking system; 3) APE(Average Position Error) is the av-
erage of all the position errors belonging to computed tra-
jectories (position error is the Euclidean distance between
blob centroid positions of computed trajectory and its cor-
responding ground-truth trajectory), the unit of this error is
pixel; 4) ATI( Average Track Incompleteness) is the aver-
age track incompleteness of all computed trajectories (track

incompleteness of a computed trajectory is the number of
frames that are missing from the computed trajectory plus
the number of frames that exist in computed trajectory but
not in the ground-truth trajectory divided by the number of
frames present in both computed and ground-truth trajecto-
ries).

Table 1. Parameters for background subtrac-
tion

Video K Tg β Tb

Hallway 3 2.4 0.0005 0.01
Shopping 5 2.4 0.05 0.01

LABSEQ (all videos) 3 3.4 0.09 0.5

K: Number of Gaussian distributions, Tg: fore-
ground/background threshold (in number of standard de-
viation), β: Learning rate, Tb: Proportion of background
distribution.

7.2 Results and discussion

In this section, first we show qualitative results and then
the quantitative results of our experiments.

Figure 5. A,B, and C are frames from LAB-
SEQ1 video sequence. First row are images
of the original video sequence and the sec-
ond row are tracking results with our algo-
rithm.

Fig. 5 shows three frames of LABSEQ1 video. This
video is chosen to illustrate the robustness of our algorithm
to severe blob fragmentation and splitting at the same time.
There are also shadows on the floor which change the object
size. Fig. 5A shows two persons merged into a group. The
label of the group is the labels of both tracked targets in the
group. Then, these two persons separate in Fig. 5B. At the
same time, there is also fragmentation because a part of the
blob’s region belonging to one of these persons has the same
color as the background. During four frames after splitting
(see section 5.1.2), our system does not make decision about



labels of blobs in the scene. This is why in Fig. 5B all
possible split blobs have the same labels as the group. After
four frames, our system handles this challenging situation
and differentiates between splitting and fragmentation by
using the information of velocities and moving distances
between centroids of the possible split blobs (Fig. 5C). Our
system also supports objects leaving the scene while they
are fragmented (Fig. 5C).

Figure 6. A, B, and C are frames from CAVIAR
video sequence (hallway).

Fig. 6 shows three frames of CAVIAR’s hallway video.
This video illustrates the effectiveness of our algorithm to
detect individual tracking targets which initially appear as
a group. Fig. 6A shows a person entering the scene with
a bag. Our algorithm detects it as one individual target. In
Fig. 6B the person puts the bag on the floor. The bag is
detected as a new target because it does not correspond to
a fragment by the criteria of our algorithm. The hypothesis
graph is then updated to take into account this new knowl-
edge by removing the unnecessary group node. Previous
individual targets become a group target and first part of the
trajectory of bag is reconstructed including the trajectory
when it was in a group (Fig.7 shows the trajectories of bag
and the person). Classical MHT [9] cannot handle enter-
ing blob as a group because the data association approach is
one-to-one. Also the recent MHT [7] which can handle en-
tering as a group, is not robust to this video because it only
tracks moving targets. The bag is stationary and therefore it
will be detected as noise. After some frames, in Fig. 6C the
person picks up the bag and leaves the scene.

To evaluate other scenarios, we selected another video
(shopping center) from CAVIAR dataset. This video is a
challenging video since there are reflections on the floor,
blob fragmentations caused by object detection, and object
size variations because objects move towards the camera.
This video shows the effectiveness of our algorithm for mul-
tiple object tracking. Fig. 8A shows three people going out
of a store and then walking along the corridor altogether.
Later, in Fig. 8B and Fig. 8C, they separate and two of
them have an interaction with another person which enters

Figure 7. Left image: trajectory of bag, right
image: trajectory of person, from CAVIAR
video sequence (hallway).

Figure 8. A, B, and C are frames from CAVIAR
video sequence (shopping center).

the field of view of the camera while others are leaving the
scene. Our algorithm succeeds to handle all the interactions
between objects and it was robust to shortcomings of object
detection such as fragmentations and shadows on the floor
because of using adaptive appearance model and fragmen-
tation handling which are insensitive to object size.

We report the quantitative tracking results of our exper-
iments in table 2. In the table 2, NF is the number of
video frames and NT is the number of ground-truth tra-
jectories. It is important to notice that the corresponding
objects to these trajectories had an overlapping time for be-
ing in the field of view of camera. For LABSEQ1 video
sequence, our system has a small average position error.
For CAVIAR video sequence (shopping center) with four
tracking targets, the first three persons have centroid posi-
tion errors which result to a considerable average position
error. This is because they walked for a long time together
in the same direction and with the same speed along the cor-
ridor. The fragmentation checking module can detect the
splitting only after some delay. It results in all three persons
being tracked as a group for a while and thus with less pre-
cision in their location. The other error for object labelled
as B1 in the group and B7 as individual (see figure 8), is
that it came into the scene in a group with two other peo-



Video NF NT fp fn APE ATI

Hallway 1226 2 0 0 10.3678 0
Shopping 1675 4 1 0 18.5803 0.0142
LABSEQ1 201 2 0 0 0.6895 0
LABSEQ2 368 3 2 0 1.5908 0
LABSEQ3 569 3 2 1 0.5007 0
LABSEQ4 244 4 0 0 11.7152 0
LABSEQ5 232 3 1 0 5.3574 0.05769
LABSEQ6 166 4 0 0 0 0
LABSEQ7 508 2 0 0 0 0.1112

Table 2. Tracking results of LABSEQ and
CAVIAR video sequences.

ple that appeared 16 frames sooner. So there are 16 false
positive tracking frames for that person, because the track-
ing algorithm cannot tell at which moment this individual
object actually entered the scene as it is first detected in the
group. This resulted to track incompleteness error. The per-
son with a white shirt had a severe fragmentation because of
the similarity between floor color and his shirt. One of the
fragmented parts of the person is detected as a false posi-
tive independent object, because it was not distinguish from
splitting before disappearing from the scene. So in the re-
sulting trajectory, there is one false positive object trajectory
fp. Similar remarks apply to the other videos to explain the
results.

Our fragmentation handling method uses temporal and
spatial blob’s appearance to distinguish between fragmen-
tation and splitting, so it has the limitation that it needs the
blob’s appearance information for at least four frames af-
ter possible fragmentation. In low frame rate videos when
a large number of people are existing in the scene, there is
a possibility that our fragmentation method fails to detect
fragmentation because of several fragmentation, splitting,
and merging in the interval less than four frames. Also, if
two tracking targets split and then walk toward the camera
with approximately the same speed, they can be confused
as fragmented regions related to one object.

8 Conclusion and future works

In this paper, a new MHT approach for online appli-
cations is presented. Our algorithm is robust to fragmen-
tation caused by misdetection errors of background sub-
traction and splitting caused by inter-object occlusions. To
generate hypotheses, we used adaptive color histograms of
blobs which give global color information of blobs in sev-
eral frames and result in more reliable data association.

Our results show the robustness of our algorithm for mul-
tiple object tracking. Our system can handle occlusion and

fragmentation well when the targets are first detected indi-
vidually. If it is not the case, our system do not know the
exact moment of appearance of an object. We could im-
prove our algorithm by trying to segment past group blobs
after splitting based on the appearance of split targets. This
would allow us to establish more precisely the position of
the targets and the composition of the groups.
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