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Abstract—In this paper, we compare the behavior of four viable
dense stereo correspondence measures, which are Normalized
Cross-Correlation (NCC), Histograms of Oriented Gradients
(HOG), Mutual Information (MI), and Local Self-Similarity
(LSS), for thermal-visible human monitoring. Our comparison is
based on a Winner Take All (WTA) box matching stereo method.
We evaluate the accuracy and the discriminative power of each
correspondence measure using challenging thermal-visible pairs
of video frames of different people with different poses, clothing,
and distances to cameras for close-range human monitoring
applications.

I. INTRODUCTION

Multimodal imagery for human analysis has a variety of

application domains, such as in-vehicle safety systems, medi-

cal monitoring, and video surveillance. For many applications,

the joint use of two or more different imaging modalities

improves the quality of the processed output. For example,

for the extraction of a human body region of interest (ROI) in

visible images, there are some difficult situations, such as color

similarity of the human body/clothing with the background,

or low contrast and reduced color information in night-time

environment under poor lighting conditions. In these cases,

only limited visual information can be captured by the visible

imaging modality. On the other hand, a thermal sensor captures

information of an object that cannot be seen in the visible

spectrum, especially at night and in low light conditions.

It provides enhanced contrast between the human body and

its environment based on their temperatures. Thermal images

allow human ROI to be extracted regardless of the lighting

conditions and of the color similarities of the human clothing

or skin with the background.

Even though thermal images provide rich information for

hot objects, the human body (ROI) extraction may still be

difficult when the human body or clothing are at the same or

a temperature near the background or in a windy environment

that change temperature. The joint use of thermal and visible

imagery results in obtaining richer information from the scene

that includes both the thermal signatures and the colors. Once

a thermal and visible pair of images is registered, then it can

be used to better detect, track, and analyze activities of human

in a scene.

The main difficulty associated with the joint use of thermal

and visible information of a scene is the matching and reg-

istration of pairs of images captured by two different types

of sensors. Unlike visible sensors that record reflected light,

IR sensors record thermal radiations reflected and emitted by

an object in a scene. Due to the numerous differences in

imaging characteristics of thermal and visible cameras, most

correspondence measures used for registering images of single

modality are not applicable. Moreover, it is impossible to find

correspondences across an entire scene. Even for partial image

ROI registration, matching corresponding regions of a person

in a pair of visible and thermal images is problematic since

the corresponding pixels have different intensities and regions

may have different patterns and textures. People might have

colorful/textured clothes that are visible in color images, but

not in thermal images. Moreover, there might be some textures

observable in thermal images caused by different clothing (e.g.

light clothes/warm clothes) and the amount of emitted energy

from different parts of human body.

In the literature, Mutual Information (MI) is the most

commonly used multimodal dense stereo correspondence mea-

sure [1]–[3]. MI measures the statistical co-occurrence of

pixel-wise information such as local textures and patterns of

matching regions. Egnal [1] has shown that mutual information

(MI) is a viable similarity metric for matching thermal and

visible images. However, for monitoring people that may

have textured clothes, MI is not necessarily a reliable cor-

respondence measure in all conditions. MI-based multimodal

matching may fail when people have textured clothes or are

partially occluded.

For registering a pair of visible images, numerous works

have studied different aspects, such as taxonomy and evalua-

tion of dense stereo correspondence algorithms [4], evaluation

of various area-based and feature-based matching approaches

[5], evaluation of cost functions [6], and evaluation of different

similarity measures and local descriptors [7]. However, due

to several differences in image characteristics of visible and

infrared modalities, most similarity measures and matching

methods used for visible images are not applicable. More

studies about viable similarity measures for multimodal image

registration and for different applications are necessary. Kroto-

sky et al. have given a general survey of different multimodal

registration approaches from the algorithmic aspect [2]. To the

best of our knowledge, there is no work that comparatively

analyzes various multimodal correspondence measures for

human body ROIs dense stereo registration in a pair of thermal



and visible images. Moreover, LSS and HOG (local image

descriptors) that have been recently introduced have not yet

been sufficiently studied for multimodal image registration

applications. In this paper, we analyze the behavior and

discriminative power of Normalized Cross-Correlation (NCC)

[8], Mutual Information (MI) [1], [9], Local Self-Similarity

(LSS) [10], and Histograms of Oriented gradients (HOG) [11],

as dense stereo similarity measures. We use a Winner Take All

(WTA) sliding box matching method for all the four measures.

We also tested four different scenarios to investigate the effect

of texture and distance to the camera with multiple people

dressed differently and walking in the scene in several pairs

of indoor and challenging thermal and visible videos.

In the following section, we introduce the descriptors and

measures that we have used in our experiments. In section III,

we describe our systematic experiment scenarios, the matching

techniques, and evaluation criteria that we have used in order

to assess the accuracy and the discriminative power of the

introduced descriptors and measures. In section IV, we present

a comparative analysis and quantitative results related to each

correspondence measure. Finally, in section V, we present the

conclusions of our comparative analysis.

II. TESTED DESCRIPTORS AND MEASURES

In this section, we present four image descriptors and mea-

sures that are suitable or frequently used to extract common

information of human ROIs in thermal and visible images.

A. Normalized Cross-Correlation

NCC is a classic similarity measure that has been widely

used for single modality image template matching and image

registration [8]. NCC consists in a pixel-wise cross-correlation

of two image regions normalized by the overall intensity

difference. NCC is defined for two bounding boxes on a pair

of images as

C(X,Y ) =

∑

x,y(Il(x, y)− Īl) ∗ (Ir(x, y)− Īr)
√

∑

x,y(Il(x, y)− Īl)2 ∗
∑

x,y(Ir(x, y)− Īr)2
,

(1)

where Il and Ir are two matching bounding boxes on the

pair of thermal and visible images.

B. Mutual Information

MI is a very popular similarity measure that has been

widely used for multimodal image registration in different

applications. MI computes the statistical co-occurrence of

pixel-wise image patterns inside a bounding box on pair of

images. MI is defined for two matching bounding boxes as

M(X,Y ) =
∑

X∈Il

∑

Y ∈Ir

P (X,Y )log
P (X,Y )

P (X)P (Y )
, (2)

where P (X,Y ), is the joint probability mass function

andP (X) and P (Y ) are the marginal probability functions.

P (X,Y ) is calculated by creating a two-dimensional his-

togram that records the number of co-occurrences of thermal

and visible intensity values in Il and Ir. The probabilities are

then obtained by normalizing the histogram by the sum of

the joint histogram entries. The marginal probabilities P (X)
and P (Y ) are then obtained by summing P (X,Y ) over the

grayscale or thermal intensities.

C. Local Self-Similarity

LSS is a local image descriptor that has been previously

applied in object detection and action detection in videos. In

our previous work, we have shown that LSS is a viable local

shape descriptor to be used for thermal-visible dense stereo

matching [12]. While most image descriptors represent the

photogrammetric properties of images (colors or gradients),

LSS represents the indirect local image property which is

the layout/shape of objects inside an image region. It can be

used to match a textured region with other differently textured

region as long as they have similar layouts. This property is

interesting for human ROIs matching in thermal and visible

images since the human body shape is similar in both types

of images but they are differently textured. LSS represents

the statistical co-occurrence of a small image patch in larger

surrounding image region. LSS descriptor is a partitioned log-

polar representation with 80 bins (20 angles and 4 radial

intervals) of a correlation surface computed by sum of square

differences (SSD) of small image patch centered at pixel p in

a larger surrounding image region. SSD is normalized by the

maximum value of the small image patch intensity variance

and fixed a value for image noise. The correlation surface is

defined as

Sp(x, y) = exp(
SSDp(x, y)

max(varnoise, varpatches)
). (3)

Since the measurement unit of LSS is an image patch rather

than a pixel, it can be customize to a suitable size for a given

application. In our experiment, the size of the patch is 3 × 3
pixels and the size of surrounding image region is 20× 20.

D. Histograms of Oriented Gradients

HOG is an image shape descriptor that has been previously

used for human detection [11]. HOG counts occurrences of

gradient orientations in localized portions of an image. It

characterizes object appearance and shape by local intensity

gradients or edge directions. In practice, HOG is computed

by dividing an image region, named a block, to small spatial

image patches (cells) and, for each cell, accumulating a local

1-D histogram of gradient directions or edge orientations over

the pixels of the cell. For each block, the combined histogram

entries form a histogram with, for example, 36 bins (4 cells,

9 bins for each cell). This descriptor has not been used yet

for multimodal dense stereo matching. In this paper, we assess

the viability of this descriptor for use as a similarity feature

in a multimodal dense stereo correspondence method. In our

experiment, the size of the cells is 8 × 8 and the size of the

blocks is 16× 16.



III. EVALUATION METHOD

In order to evaluate the correspondence measures introduced

in section II, we use series of video frames obtained from

relatively close range scene where different people with dif-

ferent poses and clothing are walking close and far (between

2-5 meters) from the camera baseline. In our evaluation,

we assess the accuracy and discriminatively power of each

correspondence measure where matching human body ROIs

in thermal and visible images are either differently textured

or of different sizes. We used synchronized visible-thermal

videos of 5m × 5m room captured by thermal and visible

cameras with a baseline of 12 cm. All videos were captured

in an indoor environment using stationary thermal and visible

cameras at a fixed room temperature (approximately 24 ◦C).

We defined four experimental scenarios based on where a

manually picked point p was selected in the visible image.

Each manually selected point p is inside a human body ROI.

The scenarios are

• TexturedFar: Matching a bounding box located on a

textured human body ROI for a target relatively far from

the camera.

• TexturelessFar: Matching a bounding box located on a

textureless human body ROI for a target relatively far

from the camera.

• TexturedNear: Matching a bounding box located on a

textured human body ROI for a target relatively close

from the camera.

• TexturelessNear: Matching a bounding box located on a

textureless human body ROI for a target relatively close

from the camera.

The corresponding region on the thermal image can be either

differently textured or homogenous. In our experiments, far

is for a target moving at a distance between 4 to 5 meters

from the camera and near is for a target moving at a distance

between 2 to 3 meters from the camera. Note that for close-

range scene monitoring, the size of target considerably changes

by walking one meter further away or toward the camera. Fig.

1 and 2 show samples of videos frames for the four scenarios.

For each scenario, we have selected 5 video frames and

within each frame, 10 points were manually selected. We

have defined different sizes for matching boxes to examine the

effect of bounding box size on each correspondence measure.

For each selected point p on the visible image, we defined

three rectangular bounding box sizes of 10 × 130, 20 × 130,

and 40 × 130 pixels centered at pixel p. Then we performed

bounding box matching between thermal and visible images.

Note that the height of matching boxes is defined larger than

its width since our matching target is a human body ROI which

has such proportions

In order to simplify the correspondence search to 1D, the

thermal and visible video frames were calibrated and rectified.

For each thermal and visible pair of images and each corre-

spondence measure, we first defined a bounding box centered

at the manually picked point p on human ROI in the visible

(a)

(b)

Fig. 1. Examples of pairs of thermal and visible images for textured
scenarios: (a) TexturedNear, (b) TexturedFar.

(a)

(b)

Fig. 2. Examples of pairs of thermal and visible images for textureless
scenarios: (a) TexturelessNear, (b) TexturelessFar.

Fig. 3. Thermal-visible 1-D matching process.



image. Then, we performed a 1D box matching search on the

thermal image in order to find the best correspondence on the

thermal image based on a WTA approach. Figure 3 shows

our matching process. The best match is the bounding boxes

on the thermal and visible pair of images with the smallest

Similarity Distance (SD) (section III-A). This procedure is

repeated for various points on the different human body ROIs

for all selected video frames.

The results were then evaluated using two metrics as in [13]:

1) accuracy using the compatibility of correspondence result

with ground-truth (section III-B and 2) discriminative power

using the shape of the similarity distance (section III-C).

A. Matching method

For LSS and HOG, the descriptor computation and the

matching are done in two separate processes, for each pair

of image boxes Wl,j and Wr,j+d centered at column j on the

visible image and column j+d column on the thermal image.

For LSS, a normalized similarity distance SDj,d, which is the

sum of L1 distance of the corresponding pixels pl ∈ Wl,j and

pr ∈ Wr,j+d having informative descriptors, is computed as

SDj,d =

∑

pl,pr
L1l,r(pl, pr)

N
, (4)

where N is the number of corresponding pixels pl and pr
contributing in the similarity distance computation and d is

the disparity offset. Then L1l,r is computed as

L1l,r(pl, pr)

80
∑

k=1

|dpl
(k)− dpr

(k)| (5)

where 80 is the number of local self-similarity descriptor’s

bins.

For HOG, for each pair of image boxes Wl,j and Wr,j+d,

the similarity distance is the Euclidean distance of the two

descriptors of the thermal and visible image boxes and it is

computed as

SDj,d =
√

(hl(1)− hr(1))2 + ...+ (hl(M)− hr(M))2,
(6)

where M is the number of descriptor bins of hl and hr for

the pair of thermal and visible matching boxes.

For MI, SD is defined as

SDj,d = 1−MI(Wl,j ,Wr,j+d), (7)

where M is the mutual information defined in equation 2.

Finally for NCC, SD is defined as

SDj,d = 1− C(Wl,j ,Wr,j+d), (8)

where C is the normalized cross-correlation defined in equa-

tion 1.

B. Compatibility of correspondence result with ground-truth

For each point p selected manually on the human body

ROI in the visible image, the corresponding point p′ on the

thermal image is selected manually and used as a ground-truth

matching point. The disparity error for pixel p is simply the

L1 distance between p′ and q, for which q is the center of the

best corresponding bounding box computed by our matching

process. The disparity error is computed for all the tested

points. Then, the number of points which have disparity errors

of more than 3 pixels (> 3) is counted and considered as the

number of bad matches.

C. Evaluating the shape of similarity distance

To assess the reliability of a correspondence measure the

number of bad matches is important, but the reliability of good

matches (disparity error <= 3) is also important. We assessed

the discriminative power of each correspondence measure by

evaluating the shape of SD along the 1D search line for the

good matches using the s value [13]. In fact, a good match

is discriminative if it is located on an isolated minimum on

the distance curve SD. It is unreliable if it is located on a

minimum that is not well defined (with close SD values for

its neighbors on the curve). In order to evaluate such minimum

isolation, first the SD values computed by the matching

process are sorted starting from minimum to maximum value

and are transformed to the interval [0, 1] named SD′. Second,

a N value is computed by counting the number of values in

SD′ that are less than a pre-computed small threshold α. α

can be estimated experimentally (more details in [13]). Note

that α has the same value for evaluating all the correspondence

measures. Third, a quality measure s (the s value) is computed

by dividing N by the total number of SD values along the 1D

search line. So s = 0 corresponds to the minimum possible

distance or most isolated minimum, and s = 1 corresponds

the maximum value or the least isolated minimum. Finally,

for each correspondence measure, a graph of Accumulated

Frequencies (AF ) of s values is computed using a set of values

S where s ∈ {0.1, 0.2, ..., 0.9, 1} . The AF for a s is computed

by counting the number of points with s value between [0, s]
and then dividing by the total number of tested points to get

a normalized value. Therefore, the correspondence measure

for which AF reach one at the smallest s value has the most

isolated minimum, thus the better discriminative power.

IV. RESULTS

A. Quantitative matching results

In this section, we assess the compatibility of correspon-

dence result with ground-truth data as described in section

III-B. Table I shows the percentage of numbers of bad matches

(disparity error > 3 pixels) for each correspondence measure

and each scenario with three different box sizes. Based on

our experiments, in general, the order of the accuracy of

the correspondence measures from best to worst is LSS, MI,

HOG, and NCC. Our results show that the matching error

of NCC is large for all four scenarios. This means that this

similarity measure is not viable for multimodal registration

since it is unable to measure similarity in complex appearance

relationships. Concerning the matching box size, Table I shows

that a small box size of 10× 130 results in a relatively large

number of bad matches for all four similarity measures. For

MI and LSS, a larger box size of 40×130 gives smaller errors



compared to the two other sizes, because a large bounding box

covers the human body ROI’s boundaries, which is the main

similar information between thermal and visible human body

ROIs.

Concerning the effect of texture, the differences between the

correspondence measures are more apparent. For far scenarios,

LSS and MI perform similarly. However for near scenarios

where the textures are more noticeable, specifically TextureN-

ear, LSS has much less error compared to MI for both 20×130
and 40 × 130 box sizes. This shows that LSS is a robust

descriptor for matching human body ROIs that are differently

textured. Moreover, for near scenarios, HOG performs better

than MI. For HOG, the medium box size 20 × 130 has less

errors in all scenarios. The reason is that a larger box size may

contain dissimilar edges and textures in the visible and in the

infrared which confuse the matching of similar edges. HOG

is more sensitive to dissimilarities containing strong gradients

compared to MI and LSS. For example, for TexturedFar and

TexturelessFar because the background is textured with strong

gradients (see Figure 1b and 2b), HOG has larger errors.

This contrasts with the two other scenarios with larger targets

where the majority of the bounding box is on the human body

ROIs rather than the background. Therefore, HOG can be a

good similarity measure choice as long as the bounding box

is correctly located on human body ROI and that it contains

strong distinctive gradients. It is important to notice that we

used a simple box matching method that does not handle

occlusion, depth discontinuity, and etc.. The errors could be

reduced by applying more sophisticated matching method such

as disparity voting or energy minimization based methods.

B. Comparative analysis of the discriminative power

In this section, we assess the discriminative power of the

correspondence measures as described in section III-C. For

each scenario, we have calculated the accumulated frequencies

(AF ) graphs of all the good matches of the correspondence

measures (the points with <= 3 pixel disparity error). To

compute the s value of each testing point, we have selected a

disparity interval D = [q−10 : q+10], where q is the position

of the minimum on the curve SD. Figures 4, 5, 6, and 7 show

the accumulated frequencies (AF ) for all the scenarios using

a box size of 40 × 130. NCC in TexturedNear scenario has

no good match, therefore we were not able to plot AF graph

for it ( Fig. 5). In general, the graphs show that for all four

scenarios LSS begins with higher values of AF at smaller S

values, which means that the proportion of good matches that

are discriminative is higher compared to other correspondence

measures. Second is MI, then HOG, and finally NCC. In the

graph, the s value where AF reaches 1 means all the good

matches have a s value between [0, s]. Recall that s = 0 is

the maximum isolation (best discriminative power) and s = 1
is the minimum isolation (worst discriminative power). The

levels of s where MI and LSS reach AF = 1 are almost

similar. However, LSS starts with higher AF values, which

means that the majority of the points in the good match

population has a reasonable level of discrimination. For MI,
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Fig. 4. Accumulated frequencies for s (TexturedFar)
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some points have a high level of discrimination and some

others have a low level of discrimination. Thus, LSS compared

to MI is less sensitive to different textures inside human body

ROIs as long as the two ROIs have similar layouts (similar

shapes of body). LSS and MI are the best choices, as NCC

and HOG are much less discriminative. LSS is superior to MI

as its best matches are more discriminative and they are larger

in number. Further, LSS is less sensitive to the matching box

size.

V. CONCLUSIONS

In this paper, we comparatively evaluated the accuracy

and the discriminative power of NCC, HOG, MI, and LSS,
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Fig. 6. Accumulated frequencies for s (TexturelessFar)



TABLE I
QUANTITATIVE MATCHING RESULTS OF THE FOUR SIMILARITY MEASURES. (ERR. %) IS THE PERCENTAGE OF THE NUMBER OF BAD MATCHES

(DISPARITY ERROR > 3 PIXELS).

Method No. images No. Points Box size TexturedFar (Err.%) TexturelessFar (Err.%) TexturedNear (Err.%) TexturelessNear (Err.%)

NCC 5 50 10× 130 100 98 100 100
MI 58 64 78 80
LSS 32 54 56 50
HOG 86 73 78 74

NCC 5 50 20× 130 100 96 100 98
MI 20 46 70 74
LSS 22 46 20 54
HOG 69 52 36 30

NCC 5 50 40× 130 98 96 100 95
MI 16 22 44 46
LSS 14 32 16 38
HOG 90 62 54 60
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Fig. 7. Accumulated frequencies for s (TexturelessNear)

as dense thermal-visible stereo correspondence measures for

human body ROI registration. Our experiments show that NCC

fails in most scenarios as a similarity measure and is not

suitable for this task. However, HOG can be a reasonable

similarity measure in situation where there are sufficient simi-

lar strong edges and boundaries inside the matching bounding

boxes. However, HOG is sensitive to dissimilarities containing

strong gradients. MI is a reasonable and viable multimodal

correspondence measure in the case where the joint probability

is sufficiently populated inside the matching bounding boxes.

However, MI is sensitive to the size of matching bounding

boxes and fails when the human bodyROIs are differently

textured. Finally, our experiments show that LSS is the most

accurate and discriminative correspondence measure because

it mostly describes the layout (human body shape) and it is

less sensitive to differently textured regions inside human body

ROIs in thermal and visible images.
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